PHYSIOLOGICAL STATE OF ONE-YEAR-OLD AND TWO-YEAR-OLD PIKEPERCH (SANDER LUCIOPERCA) AFTER WINTERING IN CAGES AND PONDS
Abstract and keywords
Abstract (English):
Studies of the physiological state of one-year-old and two-year-old pikeperch after wintering in fish farming cages and ponds have shown significant differences in mass-size, chemical, hematological and histophysiological parameters of fish. For pikeperch of both ages, significant differences were observed in the form of higher values of the liver index in farmed fish (1.63% vs. 1.33% in one-year-olds and 2.79% vs. 1.16% in two-year-olds), abdominal fat index (0.96% vs. 0.39% in one-year-olds and 7.88% vs. 0.44% in two-year-olds), vitamin C (76.5% vs. 18.9% in one-year-olds and 69.9% vs. 12.3% in two-year-olds), in the shift of the balance of the fatty acid status of body lipids towards the accumulation of MUFAs – monounsaturated fatty acids (39.61% vs. 27.47% of the total fatty acids in one-year-olds and 54.34% vs. 39.90% of the total fatty acids in two-year-olds), a decrease in the proportion of physiologically active acids of the n-3 series (21.60% vs. 22.53% of the total fatty acids in one-year-olds and 12.19% vs. 17.70% of the total fatty acids in two-year-olds), and a significant decrease in hemoglobin (65.2 g /l vs. 76.5 g /l) and MCH – the average content of hemoglobin in the erythrocyte (28.4 vs. 33.9 pictograms, pg) in one-year-olds and a tendency to decrease these indicators in two-year-olds (68.7 g /l vs. 73.5 g /l hemoglobin and 31.7 pg vs. 35.6 pg, respectively). More pronounced differences in the studied parameters are characteristic of older pikeperch from fish farms, relative to fish from ponds. Two-year-old pikeperch reared in cages of a fish farm are characterized by significantly greater length (21.10 vs. 18.78 cm) and body weight (89.50 vs. 68.97 g), high content of body lipids (8.75 vs. 2.05%), dry matter (30.8 vs. 23.4%) and BEV – nitrogen-free extractives (4.11 versus 1.55%). Two-year-old pikeperch reared in cages of a fish farm are characterized by significantly greater length (21.10 cm vs. 18.78 cm) and body weight (89.50 g vs. 68.97 g), high content of body lipids (8.75% vs. 2.05%), dry matter (30.8% vs. 23.4%) and NFE - nitrogen-free extractives (4.11% versus 1.55%). In addition, two–year-olds (females) in industrial conditions had more developed gonads with a similar gonadosomatic index with pikeperch from ponds (0.20 and 0.23, respectively) - active formation of a reserve fund of germ cells and the presence of oocytes of various size groups were observed in the ovaries of farmed fish. Certain distinctions in pikeperch of different ages after wintering in fish farming cages and ponds are related to different conditions of keeping and feeding fish.

Keywords:
pikeperch, Sander lucioperca, broodstock, industrial aquaculture, artificial feed, ponds, physiological state, morphophysiology
Text
Publication text (PDF): Read Download
References

1. Atlas presnovodnyh ryb Rossii: V 2 t. T. 2. // Pod red. Yu.S. Reshetnikova. M.: Nauka, 2002. 253 s.

2. Vylka M.M. Pokazateli krovi godovikov i dvuhgodovikov sudaka Sander lucioperca, vyraschivaemogo v prudah i sadkah // “Sovremennye problemy i perspektivy razvitiya rybohozyaystvennogo kompleksa”: materialy IX Nauchno-prakticheskoy konferencii molodyh uchenyh s mezhdunarodnym uchastiem, posvyaschennoy 140-letiyu VNIRO / Pod red. Gordeeva I.I., Kivvy K.K., Vorob'evoy O.V., Arhipova L.O., Lavruhinoy E.V. M.: Izd- vo VNIRO, 2021. S. 44-46.

3. Golovina N.A. Morfofunkcional'naya harakteristika krovi ryb - ob'ektov akvakul'tury. Avtoref. dis. … dokt. biol. nauk. M. VNIIPRH, 1996. 53 s.

4. Golodec G.G. Laboratornyy praktikum po fiziologii ryb. M.: Pischepromizdat, 1955. 90 s.

5. Gorbenko E.V., Dahno L.G., Pavlyuk A.A., Sergeeva S.G. Sostoyanie proizvoditeley sudaka i tarani i obespechennost' imi nerestovo-vyrostnyh hozyaystv poymennogo tipa Krasnodarskogo kraya // Tr. AzNIIRH (Rezul'taty rybohozyaystvennyh issledovaniy v Azovo-Chernomorskom basseyne). 2019. T. 2. S. 201-209.

6. Zhiteneva A.D., Makarov E.V., Rudnickaya O.A., Mirzoyan A.V. Osnovy ihtiogematologii (v sravnitel'nom aspekte). R. n/Donu: AzNIIRH, 2012. 320 s.

7. Zabotkina E.A., Lapirova T.B., Serednyakov V.E., Nesterova T.A. Ekologicheskaya plastichnost' gematologicheskih pokazateley presnovodnyh kostnyh ryb // Tr. Instituta biologii vnutrennih vod RAN. 2015. T. 72. S. 16-29.

8. Ivanova N.T. Atlas kletok krovi ryb (sravnitel'naya morfologiya i klassifikaciya formennyh elementov krovi ryb). M.: Legkaya i pischevaya prom-t', 1983. 184 s.

9. Knyazeva L.M. Rekomendacii po uvelicheniyu sroka hraneniya granulirovannogo korma dlya molodi foreli putem opryskivaniya ego vodnym rastvorom vitamina C. L.: GosNIORH, 1979. 12 s.

10. Korolev A.E. Energeticheskiy balans i raciony molodi sudaka i pelyadi pri ih sovmestnom vyraschivanii v prudu // Sb. nauch. tr. GosNIORH. 1984. T. 222. S. 21-30.

11. Kostyleva A.A., Flerova E.A. Osobennosti himicheskogo sostava myshechnoy tkani lescha Abramis brama Gor'kovskogo vodohranilischa // Vopr. rybolovstva. 2015. T. 16, № 4. S. 412-418.

12. Kuderskiy L.A. Dolgoperiodnye izmeneniya ulovov ryb vostochnoy chasti Finskogo zaliva // Tam zhe. 2000. T. 1, № 2-3, Ch. 2. S. 23-24.

13. Kuzina T.V. Analiz gematologiche¬skih pokazateley sudaka Volgo-Kaspiyskogo kanala // Estestvennye nauki. 2009. № 4. S. 96-100.

14. Lilli R. Patogistologicheskaya tehnika i prakticheskaya gistohimiya. M.: Mir, 1969. 645 c.

15. Lyutikov A.A., Korolev A.E. Opredelenie optimal'noy massy i plotnosti posadki molodi sudaka (Sander lucioperca) pri perevode iz prudov v industrial'nye usloviya // Vopr. rybolovstva. 2020. T. 21, № 2. S. 188-202.

16. Lyutikov A.A., Korolev A.E. Opredelenie optimal'nyh pokazateley massy tela, plotnosti posadki, temperaturnogo rezhima vyraschivaniya i sostava kormov pri adaptacii molodi sudaka (Sander lucioperca) iz prudov k industrial'nym usloviyam // Tam zhe. 2021. T. 22, № 3. S. 61-82.

17. Metodicheskie ukazaniya po provedeniyu gematologicheskogo obsledovaniya ryb, utverzhdennye Departamentom veterinarii ot 2 fevralya 1999 g. № 13-4-2/1487 // Sbornik instrukciy po bor'be s boleznyami ryb. Ch. 2. M.: Otdel marketinga AMB-agro, 1999. S. 69-97.

18. Mikodina E.V., Sedova M.A., Chmilevskiy D.A., Mikulin A.E., P'yanova S.V., Poluektova O.G. Gistologiya dlya ihtiologov: opyt i sovety. M.: VNIRO. 2009. 112 s.

19. Miheev P.V., Meysner E.V., Miheev V.P. Sadkovoe rybovodnoe hozyaystvo na vodohranilischah. M.: Pischevaya promyshlennost', 1970. 159 c.

20. Ostrikov A.N., Gorbatova A.V., Anikin A.A., Kopylov M.V. Analiz zhirnokislotnogo sostava rapsovogo masla // Maslozhirovaya promyshlennost'. 2016. № 6. S. 18-21.

21. Ostroumova I.N. Metodicheskie ukazaniya po ispol'zovaniyu analiza krovi dlya ocenki kachestva vyraschivaniya molodi semgi. L.: GosNIORH, 1966. 11 s.

22. Ostroumova I.N. Biologicheskie osnovy kormleniya ryb. SPb.: GosNIORH, 2012. 564 s.

23. Poltavchuk M.A. Biologiya i razvedenie dneprovskogo sudaka v zamknutyh vodoemah. Kiev: Naukova Dumka, 1965. 259 s.

24. Pravdin I.F. Rukovodstvo po izucheniyu ryb. M.: Pischevaya promyshlennost', 1966. 376 s.

25. Puchkov N.V. Fiziologiya ryb. M. Pischepromizdat, 1954. 370 s.

26. Rzhavskaya F.M. Zhiry ryb i morskih mlekopitayuschih. M., Pischevaya promyshlennost', 1976. 470 s.

27. Shumilina A.K., Yakubec T.G. Vliyanie zhirnosti na reproduktivnye pokazateli samcov pelyadi v industrial'nyh usloviyah // “Racional'noe ispol'zovanie presnovodnyh ekosistem - perspektivnoe napravlenie nacional'nogo proekta “Razvitie APK” (2007, Moskva). Mezhdunarodnaya nauchno-prakticheskaya konferenciya, 17-19 dekabrya 2007 g.: materialy i doklady / GNU VNIIR Rossel'hozakademii. M.: Rossel'hozakademiya, 2007. S. 319-333.

28. Shuruhin A.S., Lukin A.A., Pedchenko A.P., Titov S.F. Sovremennoe sostoyanie rybnogo promysla i effektivnost' ispol'zovaniya syr'evoy bazy Finskogo zaliva baltiyskogo morya // Tr. VNIRO. 2016. T. 160. S. 60-69.

29. Ackman R.G., Takeuchi T. Comparison of fatty acids and lipids of smolting hatchery-fed and wild Atlantic salmon Salmo salar // Lipids. 1986. Vol. 21. P. 117-120.

30. Alasalvar C., Taylor K.D.A., Zubcov E., Shahidi F., Alexis M. Differentiation of cultured and wild sea bass (Dicentrarchus labrax): total lipid content, fatty acid and trace mineral composition // Food Chem. 2002. Vol. 79. P. 145-150.

31. Arechavala-Lopez P., Sanchez-Jerez P., Bayle-Sempere J.T., Sfakianakis D.G., Somarakis S. Morphological differences between wild and farmed Mediterranean fish // Hydrobiologia. 2011. Vol. 679. № 1. P. 217-231. DOI:https://doi.org/10.1007/s10750-011-0886-y

32. Bell J.G., Famdale B.M., Bruce M.P., Navas J.M., Carrillo M. Effects of broodstock dietary lipid on fatty acid composition of eggs from sea bass (Dicentrarchus labrax) // Aquaculture. 1997. Vol. 149. P. 107-119.

33. Bell G., Sargent J. R. Arachidonic acid in aquaculture feeds: current status and future opportunities // Ibid. 2003. Vol. 218. P. 491-499.

34. Boden G., Shulman G.I. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and p-cell dysfunction // Eur. J. Clin. Invest. 2002. Vol. 32. Iss. 3. P. 14-23.

35. Datsomor A.K., Zic N., Li K., Olsen R.E., Jin Y., Vik J.O., Edvardsen R.B., Grammes F., Wargelius A., Winge P. CRISPR/Cas9-mediated ablation of elovl2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes // Sci. Rep. 2019. Vol. 9:7533 https://doi.org/10.1038/s41598-019-43862-8

36. Fallah A.A., Saei-Dehkordi S.S., Nematollahi A. Comparative assessment of proximate composition, physicochemical parameters, fatty acid profile and mineral content in farmed and wild rainbow trout (Oncorhynchus mykiss) // Int. J. Food Sci. Technol. 2011. Vol. 46. P. 767-773.

37. Fazio F., Marafioti S., Arfuso S., Piccione G., Faggio C. Comparative study of the biochemical and hematological parameters of four wild Tyrrhenian fish species // Vet. Med. 2013. Vol. 58. P. 576-581. https://doi.org/10.17221/7139-VETMED

38. Folch J., Lees M., Sloane-Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues // J. Biol. Chem. 1957. Vol. 226. N. 1. P. 497-509.

39. Fuentes A., Fernandez-Segovia I., Serra J.A., Barat J.M. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality // Food Chem. 2010. Vol. 119. P. 1514-1518.

40. Gonzalez S., Flick G.J., O´Keefe S.F., Duncan S.E., McLean E.,Craig S.R. Composition of farmed and wild yellow perch (Perca flavescens) // J. Food Compos. Anal. 2006. Vol. 19. P. 720-726.

41. Hard J.J., Berejikian B.A., Tezak E.P., Schroder S.L., Curtis M., Knudsen L., Parker T. Evidence for morphometric differentiation of wild and captively reared adult coho salmon: a geometric analysis // Environ. Biol. Fishes. 2000. Vol. 58. P. 61-73.

42. Jankowska B., Zakes Z., Źmijewski T., Szczepkowski M. A comparison of selected quality features of the tissue and slaughter field of wild and cultivated pikeperch Sander lucioperca (L.) // Eur. Food Res. Technol. 2003. Vol. 217. P. 401-405.

43. Jankowska B., Zakęś Z., Żmijewski T., Szczepkowski M. Fatty acid composition of wild and cultured northern pike (Esox lucius) // J. Appl. Ichthyol. 2008. Vol. 24. P. 196-201.

44. Johnston I.A.,, Li X., Vieira V.L.A., Nickell D., Dingwall A., Alderson R., Campbell P., Bickerdike R. Muscle and flesh quality traits in wild and farmed Atlantic salmon // Aquaculture 2006. Vol. 256. P. 323-336.

45. Khendek A., Chakraborty A., Roche J., Ledoré Y., Personne A., Policar T., Żarski D., Mandiki R., Kestemont P., Milla S. Rearing conditions and life history influence the progress of gametogenesis and reproduction performances in pikeperch males and females // Animal. 2018. Vol. 12. P. 2335-2346.

46. Kikuchi K., Furuta T., Iwata N., Onuki K., Noguchi T. Effect of dietary lipid levels on the growth, feed utilization, body composition and blood characteristics of tiger puffer Takifugu rubripes // Aquaculture, 2009. Vol. 298. P. 111-117.

47. Ljubojevic D., Trbovic D., Lujic J., Bjelic-Cabrilo O., Kostic D., Novakov N., Cirkovic M. Fatty acid composition of fishes from inland waters // Bulgar. J. Agric. Sci. 2013. Vol. 19. № 1. P. 62-71.

48. Lyutikov A.A. Comparative Characteristics of the Size-Weight Parameters and Lipid Composition of Wild and Cultured Eggs of the Muksun Coregonus muksun (Pallas, 1814) // Contemporary Problems of Ecology. 2022, Vol. 15. №. 1. P. 83-90. DOIhttps://doi.org/10.1134/S199542552201005X

49. Movahed R., Khara H., Ahmadnezhad M., Sayadboorani M. Hematological characteristics associated with parasitism in Pikeperch Sander lucioperca (Percidae) from Anzali Wetland // J. Parasit. Dis. 2015. Vol. 40. P. 1337-1341.

50. Nefedova Z. A., Murzina S. A., Pekkoeva S. N., Voronin V. P., Nemova N. N. Comparative Characteristics of the Fatty Acid Composition of Lipids in Factory and Wild Juveniles of Atlantic Salmon Salmo salar // Contemporary Problems of Ecology. 2020. Vol. 13. № 2. P. 156-161.

51. Norambuena F., Estevez A., Bell G., Carazo I. Duncan N. Proximate and fatty acid compositions in muscle, liver and gonads of wild versus cultured broodstock of Senegalese sole (Solea senegalensis) // Aquaculture. 2012. Vol. 356. P. 176-185.

52. Parrino V., Cappello T., Costa G., Cannavà C., Sanfilippo M., Fazio F., Fasulo F., Comparative study of hematology of two teleost fish (Mugil cephalus and Carassius auratus) from different environments and feeding habits // Eur. Zool. 2018. Vol. 85. P. 193-199. https://doi.org/10.1080/24750263.2018.1460694

53. Payuta A.A., Flerova E.A. Some indicators of metabolism in the muscles, liver, and gonads of pike-perch Sander lucioperca and sichel Pelecus cultratus from the Gorky Reservoir // Journal of Ichthyology. 2019. Vol. 59. №. 2. P. 255-262.

54. Rodriguez-Barreto D., Jerez S., Cejas J.R., Martin M.V., Acosta N.G., Bolasos A., Lorenzo A. Comparative study of lipid and fatty acid composition in different tissues of wild and cultured female broodstock of greater amberjack (Seriola dumerili) //Aquaculture. 2012. Vol. 360-361. P. 1-9.

55. Roh H., Park J., Kim A., Kim N., Lee Y., Kim B.S., Kim D.H. Overfeeding-induced obesity could cause potential immuno-physiological disorders in rainbow trout (Oncorhynchus mykiss) // Animals. 2020. Vol. 10. P. 1499-1506.

56. Ruuhijärvi J., Hyvärinen P. The sta¬tus of pike-perch culture in Finland // J. Appl. Ichtiol. 1996. Vol. 12 (3-4). R. 185-188.

57. Sargent J.R., Bell J.G., Bell M.V., Henderson R.J., Tocher D.R. The metabolism of phospholipids and polyunsaturated fatty acids in fish. Aquaculture: Fundamental and Applied Research. Coastal Estuarine Studies. Washington, USA: American Geophysical Union (AGU), 1993. Vol. 43. P. 103-124.

58. Schulz C., Bódis M. Rearing and feeding management of pikeperch (Sander lucioperca) in intensive systems // World Aquaculture, 2008. Vol. 17-21.

59. Steffens W. Aquaculture of fry and fingerling of pike-perch (Stizostedion lucioperca L.) - a short review // J. Appl. Ichtiol. 1996. Vol. 12 (3-4). R. 167-170.

60. Steffens W., Wirth M. Influence of nutrition on the lipid quality of pond fish: common carp (Cyprinus carpio) and tench (Tinca tinca) // Aquaculture International. 2007. Vol. 15. P. 313-319.

61. Wang X., Li Y., Hou C., Gao Y., Wang Y. Physiological and molecular changes in large yellow croaker (Pseudosciaena crocea R.) with high-fat diet-induced fatty liver disease // Aquac. Res. 2015. Vol. 46. P. 272-282.

62. Yildiz M., Şener E., Timur M. Effects of differences in diet and seasonal changes on the fatty acid composition in fillets from farmed and wild sea bream (Sparus aurata L.) and sea bass (Dicentrarchus labrax L.) // Int. J. Food Sci. Technol. 2008. Vol. 43. P. 853-858.

Login or Create
* Forgot password?