Using MALDI TOF/TOF mass spectrometry, the sites hydrolysis of proteins by β-lytic metalloproteinase from Lysobacter capsici, strain VKM 2533T bacteria were identified and the molecular specificity of this enzyme was determined. Analysis of the hydrolysis products of eight proteins (myoglobin, three chains of casein, hemoglobin, ovalbumin, ovomucoid, bovine serum albumin, and Drosophila enolase 2) revealed the specificity of Lysobacter capsici β-lytic protease to hydrolyze peptide bonds at the carboxyl groups of glycine, lysine, alanine, phenylalanine, serine, asparagic acid, threonine, valine, glutamic acid, histidine, arginine, and cysteine. The most frequently hydrolyzed amino acids were glycine and alanine, which may be due to their small size and high accessibility to the active center of the enzyme. At the same time, the presence of additional hydrolysis sites, such as threonine, in the hydrolysis of proteins in PAAG, but not in solution, indicates the influence of protein conformation on the availability of certain sites for the enzyme. Comparison of the results of protein hydrolysis in solution and in PAAG showed that protein denaturation during electrophoresis can affect the accessibility of hydrolysis sites. For example, hydrolysis of myoglobin in gel revealed an additional threonine hydrolysis site, which was absent when hydrolyzed in solution. This confirms that protein conformational changes caused by denaturation can significantly affect the specificity of proteolysis.
MALDI mass spectrometry, bacterial metalloprotease, protein hydrolysis, electrophoresis, amino acids
1. Aleksandrov M.L., Gal' L.N., Krasnov N.V. i dr. Ekstrakciya ionov iz rastvorov pri atmosfernom davlenii — metod mass-spektrometricheskogo analiza bioorganicheskih veschestv // DAN SSSR. 1984. Vyp. 277. № 2. S. 379–383.
2. Veselovskiy A.V., Sobolev B.N., Zharkova M.S., Archakov A.I. Komp'yuternye metody predskazaniya substratnoy specifichnosti citohromov r450 // Biomedicinskaya himiya. 2010. Vyp. 56. № 1. S. 90–100.
3. Konstantinov M.A., Zhdanov D.D., Toropygin I.Yu. Kolichestvennaya mass-spektrometriya s metkoy ¹⁸O kak al'ternativnyy podhod k opredeleniyu aktivnosti proteaz na primere tripsina // BIOpreparaty. Profilaktika, diagnostika, lechenie. 2024. Vyp. 24(1). S. 46–60. DOI:https://doi.org/10.30895/2221-996X-2024-24-1-46-60.
4. Trachuk L.A., Bushueva A.M., Shevelev A.B. i dr. Izuchenie S1’-karmana pervichnoy specifichnosti karboksipeptidazy T Thermoactinomyces vulgaris metodom napravlennogo mutageneza // Biomedicinskaya himiya. 2002. Vyp. 48. № 6. S. 577–585.
5. Blombäck B., Blombäck M., Edman P., Hessel B. Human fibrinopeptides isolation, characterization and structure // Biochim. Biophys. Acta. 1966. Vol. 115. № 2. P. 371–396. DOI:https://doi.org/10.1016/0304-4165(66)90437-5.
6. Christensen P., Cook F. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio // Int. J. Syst. Evol. Microbiol. 1978. Vol. 28. P. 367–393.
7. Fenn J.B., Mann M., Meng C.K. et al. Electrospray ionization for mass spectrometry of large biomolecules // Science. 1989. Vol. 246. № 4926. P. 64–71. DOI:https://doi.org/10.1126/science.2675315.
8. Giansanti P., Tsiatsiani L., Low T.Y., Heck A.J.R. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin // Nat. Protoc. 2016. Vol. 11. № 5. P. 993–1006. DOI:https://doi.org/10.1038/nprot.2016.057.
9. Herbert C.G., Johnstone R.A.W. Mass Spectrometry Basics. Boca Raton: CRC PRESS, 2002. 474 p.
10. Karas M., Bachmann D., Hillenkamp F. Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules // Anal. Chem. 1985. Vol. 57. № 14. P. 2935–2939.
11. Linderstrøm-Lang K. Lane Medical Lectures: Proteins and Enzymes. Stanford University Press: Stanford, 1953.
12. Mann M. The Rise of Mass Spectrometry and the Fall of Edman Degradation // Clin. Chem. 2016. Vol. 62. № 1. P. 293–294. DOI:https://doi.org/10.1373/clinchem.2014.237271.
13. Šlechtová T., Gilar M., Kalíková K., Tesařová E. Insight into Trypsin Miscleavage: Comparison of Kinetic Constants of Problematic Peptide Sequences // Anal. Chem. 2015. Vol. 87. № 15. P. 7636–7643. DOI:https://doi.org/10.1021/acs.analchem.5b00866.
14. Tsiatsiani L., Heck A.J.R. Proteomics beyond trypsin // FEBS J. 2015. Vol. 282(14). P. 2612–2626. DOI:https://doi.org/10.1111/febs.13287.
15. Walmsley S.J., Rudnick P.A., Liang Y. et al. Comprehensive analysis of protein digestion using six trypsins reveals the origin of trypsin as a significant source of variability in proteomics // J. Proteome Res. 2013. Vol. 12. P. 5666–5680. DOI:https://doi.org/10.1021/pr400611h.
16. Yamashita M., Fenn J.B. Electrospray ion source. Another variation on the free-jet theme // J. Phys. Chem. 1984. Vol. 88. № 20. P. 4451–4459. DOI:https://doi.org/10.1021/j150664a002.



