UDK 504.74 Животный мир
UDK 546.49-121 Металлическая ртуть
Soil invertebrates are the main food resource for birds and small mammals. The migration of mercury into the food webs of terrestrial ecosystems is still poorly investigated. The mercury content in soil, earthworms, wolf spiders and harvesters of the forest park zone of Cherepovets (Vologda region) was determined. The collection of the material was carried out on 5 sites (birch-aspen forest, wet pine forest, dry pine forest, wet meadow, dry meadow) differing in the composition of vegetation and the position in the cascade of geochemical landscapes. The minimum mercury content was found in the soils of the dry meadow (eluvial landscape) – 25 ng/g, the maximum – in the soils of the wet meadow (accumulative landscape) – 188 ng/g. The maximum concentrations of mercury in all sites were found in earthworms – from 261 ng/g in the dry pine forest to 1095 ng/g in the wet meadow. The concentration of mercury in wolf spiders was lower than in earthworms. The minimum values were found in a dry meadow. In all sites, the mercury content in wolf spiders was significantly higher than in harvesters. There are no significant correlations between the mercury content in soils and the organism of the studied invertebrates.
soils, earthworms, wolf spiders, haymakers, geochemical landscapes
1. Komov V.T., Gremyachih V.A., Udodenko Yu.G., Schedrova E.V., Elizarov M.E. Rtut' v abioticheskih i bioticheskih komponentah vodnyh i nazemnyh ekosistem poselka gorodskogo tipa na beregu Rybinskogo vodohranilischa // Trudy Instituta biologii vnutrennih vod im. I.D. Papanina RAN. 2017. Vyp. 77 (80). S. 34-56. DOI:https://doi.org/10.24411/0320-3557-2017-10003
2. Marusik Yu.M. Kovblyuk N.M. Pauki Sibiri i Dal'nego Vostoka. Moskva: Tovarischestvo nauchnyh izdaniy KMK, 2011. 344 s.
3. Udodenko Yu.G., Devyatova T.A., Komov V.T., Tregubov O.V. Rtut' v gidromorfnyh pochvah Voronezhskogo gosudarstvennogo prirodnogo biosfernogo zapovednika // Vestnik VGU. Seriya: himiya, biologiya, farmaciya. 2011. № 2. S. 148-153.
4. Udodenko Yu.G., Filippov D.A. Rtut' v torfyanyh otlozheniyah Shichengskogo bolota (Vologodskaya oblast') // Trudy Instituta biologii vnutrennih vod im. I.D. Papanina RAN. 2017. Vyp. № 79 (82). S. 236-242. DOI:https://doi.org/10.24411/0320-3557-2017-10059
5. Beckers F., Rinklebe J. Cycling of mercury in the environment: Sources, fate, and human health implications: A review. // Critical Reviews in Environmental Science and Technology. 2017. Vol. 47. P. 693-794. DOI:https://doi.org/10.1080/10643389.2017.1326277
6. Bouchelouche D., Arab A. Bioaccumulation of heavy metals in an aquatic insect (Baetispavidus; Baetidae; Ephemeroptera) in the El HarrachWadi (Algeria) // Arab. J. Geosci. 2020. № 13. P. 672. DOI:https://doi.org/10.1007/s12517-020-05582-6
7. Burns D.A., Woodruff L.G., Bradley P.M., Cannon W.F. Mercury in the Soil of Two Contrasting Watersheds in the Eastern United States // PLoS ONE. 2014. Vol. 9. P. 86855. DOI:https://doi.org/10.1371/journal.pone.0086855
8. Colacevich A., Sierra M.J., Borghini F., Millán R., Sanchez-Hernandez J.C. Oxidative stress in earthworms short- and long-term exposed to highly Hg-contaminated soils // Journal of Hazardous Materials. 2011. Vol. 194. P. 135-143. DOI:https://doi.org/10.1016/j.jhazmat.2011.07.091
9. Cristol D.A., Brasso R.L., Condon A.M., Fovargue R.E., Friedman S.L., Hallinger K.K., Monroe A.P., White A.E. The Movement of Aquatic Mercury Through Terrestrial Food // Webs. Science. 2008. Vol. 320. P. 335-335. DOI:https://doi.org/10.1126/science.1154082
10. de Vries W., Römkens P.F.A.M., Schütze G. Critical Soil Concentrations of Cadmium, Lead, and Mercury in View of Health Effects on Humans and Animals // Reviews of Environmental Contamination and Toxicology. 2007. Vol. 191. P. 91-130. DOI:https://doi.org/10.1007/978-0-387-69163-3_4
11. Driscoll C.T., Mason R.P., Chan H.M., Jacob D.J., Pirrone N. Mercury as a Global Pollutant: Sources, Pathways and Effects // Environ. Sci. Technol. 2013. № 47. P. 4967-4983. DOI:https://doi.org/10.1021/es305071v
12. Ernst G., Zimmermann S., Christie P., Frey B. Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils // Environmental Pollution. 2008. Vol. 156. P. 1304-1313. DOI:https://doi.org/10.1016/j.envpol.2008.03.002
13. Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva. Switzerland: Narayana Press. 2019. 58 p.
14. Gongalsky K.B., Filimonova Zh.V., Pokarzhevskii A.D., Butovsky R.O. Differences in responses of herpetobionts and geobionts to impact from the Kosogorsky metallurgical plant (Tula region, Russia) // Russian Journal of Ecology. 2007. Vol. 38. № 1. R. 52-57.
15. Kabata-Pendias A. Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press Taylor and Francis Group, 2011. 500 p.
16. Lanno R., Wells J., Conder J., Bradham K., Basta N. The bioavailability of chemicals in soil for earthworms // Ecotoxicol Environ Saf. 2004. Vol. 57. P. 39-47.
17. Lavoie R.A., Jardine T.D., Chumchal M.M., Kidd K.A., Campbell L.M. Biomagnification of Mercury in Aquatic Food Webs: A Worldwide Meta-Analysis // Environ. Sci. Technol. 2013. Vol. 47. P. 13385-13394. DOI:https://doi.org/10.1021/es403103t
18. Li C., Xu Z., Luo K., Chen Z., Xu X., Xu C., Qiu G. Biomagnification and trophic transfer of total mercury and methylmercury in a sub-tropical montane forest food web, southwest China // Chemosphere. 2021. Vol. 277. P. 130371. DOI:https://doi.org/10.1016/j.chemosphere.2021.130371
19. Mahbub K.R., Krishnan K., Naidu R., Andrews S., Megharaj M. Mercury toxicity to terrestrial biota // Ecological Indicators. 2017. Vol. 74. P. 451-462. DOI:https://doi.org/10.1016/j.ecolind.2016.12.004
20. Makarov A.M., Ivanter E.V. Dimensional characteristics of prey and their role in the diet of shrews (Sorex l.) // Russian journal of ecology. 2016. Vol. 46, № 3. P. 315-319. DOI:https://doi.org/10.1134/S1067413616030073
21. Oliveira C.S., Nogara P.A., Ardisson-Araújo D.M.P., Aschner M., Rocha J.B.T., Dórea J.G. Neurodevelopmental Effects of Mercury // Advances in Neurotoxicology. 2018. Vol. 2. P. 27-86. DOI:https://doi.org/10.1016/bs.ant.2018.03.005
22. Razavi R.N., Cushman S.F., Halfman J.D., Massey T., Beutner R., Cleckner L.B. Mercury bioaccumulation in stream food webs of the Finger Lakes in central New York State, USA // Ecotoxicology and Environmental Safety. 2019. Vol. 172. P. 265-272. DOI:https://doi.org/10.1016/j.ecoenv.2019.01.060
23. Rieder S.R., Brunner I., Horvat M., Jacobs A., Frey B. Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils // Environmental Pollution. 2011. Vol. 159. P. 2861-2869. DOI:https://doi.org/10.1016/j.envpol.2011.04.040
24. Rimmer C.C., Miller E.K., McFarland K.P., Taylor R.J., Faccio S.D. Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest // Ecotoxicology. 2010. Vol. 19. P. 697-709. DOI:https://doi.org/10.1007/s10646-009-0443-x
25. Rodenhouse N.L., Lowe W.H., Gebauer R.L.E., McFarland K.P., Bank M.S. Mercury bioaccumulation in temperate forest food webs associated with headwater streams // Science of The Total Environment. 2019. Vol. 665. P. 1125-1134. DOI:https://doi.org/10.1016/j.scitotenv.2019.02.151
26. Selin N.E. Global Biogeochemical Cycling of Mercury: A Review // Annu. Rev. Environ Resour. 2009. Vol. 34. P. 43-63. DOI:https://doi.org/10.1146/annurev.environ.051308.084314
27. Suhareva N., Aigars J., Poikane R., Tunens J. The infuence of feeding ecology and location on total mercury concentrations in Eurasian perch (Perca fluviatilis) // Environ. Sci. Eur. 2021. Vol. 33:82. DOI:https://doi.org/10.1186/s12302-021-00523-w.
28. Tipping E., Lofts S., Hooper H., Frey B., Spurgeon D., Svendsen C. Critical Limits for Hg(II) in soils, derived from chronic toxicity data // Environmental Pollution. 2010. Vol. 158. P. 2465-2471. DOI:https://doi.org/10.1016/j.envpol.2010.03.027
29. Udodenko Y.G., Robinson C.T., Choijil J., Badrakh R., Munkhbat J., Ivanova E.S., Komov V.T. Mercury levels in sediment, fish and macroinvertebrates of the Boroo River, northern Mongolia, under the legacy of gold mining // Ecotoxicology. 2022. Vol. 31. P. 312-323. DOI:https://doi.org/10.1007/s10646-021-02502-6
30. Wu G., Tang S., Han J., Li C., Liu L., Xu X., Xu Z., Chen Z., Wang Y., Qiu G. Distributions of Total Mercury and Methylmercury in Dragonflies from a Large, Abandoned Mercury Mining Region in China // Arch. Environ. Contam.Toxicol. 2021. Vol. 81. P. 25-35. DOI:https://doi.org/10.1007/s00244-021-00854-y
31. Zhang Z.S., Zheng D.M., Wang Q.C., Lv X.G. Bioaccumulation of Total and Methyl Mercury in Three Earthworm Species (Drawida sp., Allolobophora sp., and Limnodrilus sp.) // Bull. Environ. Contam. Toxicol. 2009. Vol. 83. P. 937-942. DOI:https://doi.org/10.1007/s00128-009-9872-8
32. Zheng D.-M., Wang Q.-C., Zhang Z.-S., Zheng N., Zhang X.-W. Bioaccumulation of Total and Methyl Mercury by Arthropods // Bull. Environ. Contam.Toxicol. 2008. Vol. 81. P. 95-100. DOI:https://doi.org/10.1007/s00128-008-9393-x
33. Zhu, J., Yang, D., Fu, R., Wang, W., Guo, X., Yao, H. Hormetic effects of mercury on survival of Eisenia fetida (Oligochaeta) // Civil Eng. Urban Plan. 2012. P. 299-307. DOI:https://doi.org/10.1061/9780784412435.055