MERCURY CONCENTRATIONS IN MUSCLES OF DIFFERENT FISH SPECIES FROM WATER BODIES OF YAROSLAVL REGION AND ADJACENT TERRITORIES
Abstract and keywords
Abstract (English):
Mercury (Hg) and its compounds, which pose a health risk to the population not engaged in hazardous industries, enter the human body mainly with food items. First of all, these are seafood, fish and canned fish. In this study, the concentrations of Hg in the muscles of different fish species from the water bodies of the Yaroslavl province were determined. The average values of mercury content range from 0.03 to 0.41 mg/kg wet weight. The recorded levels of mercury accumulation correspond or are close to the previously obtained values in the muscles of fish from freshwater reservoirs of the European part of Russia and European states. The species-specificity of the Hg accumulation process, its dependence on trophic specialization and size-weight characteristics of fish, as well as on the type of reservoir were noted. The regulatory standards established in the Russian Federation for the mercury content in the muscles of non-predatory (<0.3 mg/kg w.w.) and predatory (<0.6 mg/kg w.w.) fish species were exceeded in 0.3% and 16% of the studied non-predatory and predatory fish, respectively. Most specimens of predatory fish species with Hg concentrations in the muscles exceeding the accepted standards were recorded in small lakes with swampy catchment areas, less in reservoirs, and least of all – in medium-sized lakes. The maximum acceptable limits of mercury content in fish and fish products established in the Russian Federation correspond or are close to the current standards accepted in the countries of the European Community and the United States and WHO recommendations, although there is no detailed regulation by age groups and risk groups.

Keywords:
fish; regulations for the Hg content in fish products; Yaroslavl province
Text
Publication text (PDF): Read Download
References

1. Borisov M.Ya. Ryby Vologodskoy oblasti: spravochnoe izdanie. Cherepovec: Port-Aprel', 2019. 127 s.

2. Gorbunov A.V., Lyapunov S.M., Okina O.I., Sheshukov V.S. Bioakkumulyaciya rtuti v tkanyah presnovodnyh ryb // Ekologiya cheloveka. 2018. № 11. S. 26-31. DOI:https://doi.org/10.33396/1728-0869-2018-11-26-31

3. Gorbunov A.V., Lyapunov S.M., Okina O.I., Sheshukov V.S. Ocenka postupleniya malyh doz rtuti v organizm cheloveka s produktami pitaniya // Ekologiya cheloveka. 2017. № 10. S. 16-20. DOI:https://doi.org/10.33396/1728-0869-2017-10-16-20

4. Gorbunov A.V., Ermolaev B.V., Lyapunov S.M. Ocenka postupleniya rtuti ot potrebleniya ryby i moreproduktov v Rossii // Nauki o pischevyh produktah i pitanii. 2016. № 7. S. 516-523. DOI:https://doi.org/10.33396/1728-0869-2017-10-16-20

5. Gremyachih V.A., Lozhkina R.A., Komov V.T. Prostranstvenno vremennaya variabel'nost' soderzhaniya rtuti v rechnom okune Perca fluviatilis Linnaeus, 1758 (Perciformes: Percidae) Rybinskogo vodohranilischa na rubezhe XX-XXI vekov // Transformaciya ekosistem. 2019. T. 2. № 2 (4). S. 85-95. DOI:https://doi.org/10.23859/estr-180816

6. Gremyachih V., Komov V., Selyukov A. Soderzhanie rtuti v myshechnoy tkani okunya (Perca fluviatilis L.) iz ozer Zapadnoy Sibiri // Ekologicheskiy monitoring i bioraznoobrazie. 2013. T. 1. S. 44-46.

7. Doklad o sostoyanii i ohrane okruzhayuschey sredy Vologodskoy oblasti v 2020 g. / Pravitel'stvo Vologodskoy oblasti. Otv. red. Bannikov D.A. Vologda: Izd-vo Departament prirodnyh resursov i ohrany okruzhayuschey sredy Vologodskoy oblasti. 2021. 273 s.

8. Doklad o sostoyanii i ob ohrane okruzhayuschey sredy Yaroslavskoy oblasti v 2015-2016 gg. / Departament ohrany okruzhayuschey sredy i prirodopol'zovaniya Yaroslavskoy oblasti. Yaroslavl'. Izd-vo “Kadastr”. 2017. 250 c.

9. Doklad o sostoyanii i ob ohrane okruzhayuschey sredy Yaroslavskoy oblasti v 2017 g. / Departament ohrany okruzhayuschey sredy i prirodopol'zovaniya Yaroslavskoy oblasti. Yaroslavl'. Izd-vo “Kadastr”. 2019. 232 s.

10. Ivanov P.V. Klassifikaciya ozer mira po velichine i po ih sredney glubine // Byulleten' LGU. L., 1948. № 20. S. 29-36.

11. Komov V.T., Gremyachih V.A., Udodenko Yu.G., Schedrova E.V., Elizarov M.E. Rtut' v abioticheskih i bioticheskih komponentah vodnyh i nazemnyh ekosistem poselka gorodskogo tipa na beregu Rybinskogo vodohranilischa // Trudy Instituta biologii vnutrennih vod im. I.D. Papanina RAN. 2017. Vyp. 77 (80). S. 34-56. DOI:https://doi.org/10.24411/0320-3557-2017-10003

12. Komov V.T., Pronin N.M., Mendsayhan B. Soderzhanie rtuti v myshcah ryb reki Selenga i ozer ee basseyna (Rossiya) // Biologiya vnutrennih vod. 2014. № 2. S.89-96. DOI:https://doi.org/10.7868/S0320965214020053

13. Komov V.T., Stepanova I.K., Gremyachih V.A. Soderzhanie rtuti v myshcah ryb iz vodoemov Severo-Zapada Rossii: prichiny intensivnogo nakopleniya i ocenka negativnogo effekta na sostoyanie zdorov'ya lyudey // Aktual'nye problemy vodnoy toksikologii: sb. tez. dokl. Borok, 2004. S. 99-123.

14. Komov V.T., Stepanova I.K. Rtutnoe zagryaznenie // Ekologicheskie problemy Verhney Volgi. Yaroslavl': Izd-vo YaGTU. 2001. S. 239-243.

15. Nemova N.N., Lysenko L.A., Mescheryakova O.V., Komov V.T. Rtut' v rybe: Biohimicheskaya indikaciya // Biosfera. 2014. T. 6. № 2. S. 176-186.

16. ROSSTAT. Federal'naya sluzhba gosudarstvennoy statistiki “Potreblenie produktov pitaniya v domashnih hozyaystvah v 2020 godu”. 2021. https://rosstat.gov.ru/folder/11110/document/13292/.

17. SanPiN 2.3.2.1078-01 ot 14 noyabrya 2001 g. № 36. Gigienicheskie trebovaniya bezopasnosti i pischevoy cennosti pischevyh produktov. 2001. 269 s.

18. SanPin 2.4.1.3049-13 ot 15 maya 2013 g. №26 “Sanitarno-epidemiologicheskie trebovaniya k ustroystvu, soderzhaniyu i organizacii rezhima raboty doshkol'nyh obrazovatel'nyh organizaciy” https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=3511.

19. SanPiN 2.4.5.2409-08 ot 23 iyulya 2008 g. № 45. “Sanitarno-epidemiologicheskie trebovaniya k organizacii pitaniya obuchayuschihsya v obscheobrazovatel'nyh uchrezhdeniyah, uchrezhdeniyah nachal'nogo i srednego professional'nogo obrazovaniya”. http://71.rospotrebnadzor.ru/content/674/52931/.

20. Stepanova I.K., Komov V.T. Nakoplenie rtuti v rybe iz vodoemov Vologodskoy oblasti // Ekologiya. 1997. T. 28. № 4. S. 295-299.

21. Sul'dina T.I. Soderzhanie tyazhelyh metallov v produktah pitaniya i ih vliyanie na organizm // Racional'noe pitanie, pischevye dobavki i biostimulyatory. 2016. № 1. S. 136-140.

22. Filonenko I.V., Filippov D.A. Ocenka ploschadi bolot Vologodskoy oblasti // Trudy Instorfa. 2013. № 7 (60). S. 3-11.

23. Shuvalova O.P., Ivanova E.S., Komov V.T. Potreblenie ryby, soderzhanie rtuti v volosah i risk razvitiya serdechno-sosudistyh zabolevaniy u zhiteley Vologodskoy oblasti (severo-zapad Rossii) // Vestnik novyh medicinskih tehnologiy. 2021. № 4. S. 132-137. DOI:https://doi.org/10.24412/2075-4094-2021-4-3-9

24. Shuvalova O.P., Ivanova E.S., Komov V.T. Vliyanie nakopleniya rtuti na sostoyanie zdorov'ya zhenschin reproduktivnogo vozrasta // Zdorov'e naseleniya i sreda obitaniya. 2018. № 11 (308). S. 36-39. DOI:https://doi.org/10.35627/2219-5238/2019-308-11-36-39

25. Arantes F.P., Savassi L.A., Santos H.B., Gomes M.V.T., Bazzoli N. Bioaccumulation of mercury, cadmium, zinc, chromium, and lead in muscle, liver, and spleen tissues of a large commercially valuable catfish species from Brazil // An Acad Bras Ciênc. 2016. P. 137-147. DOI:https://doi.org/10.1590/0001-3765201620140434.

26. Bridges K.N., Soulen B.K, Overturf C.L., Drevnick P.E., Roberts A.P. Embryotoxicity of maternally transferred methylmercury to fathead minnows (Pimephales promelas) // Environ. Toxicol. Chem. 2016. Vol. 35. P. 1436-1441. DOI:https://doi.org/10.1002/etc.3282

27. COT / Updated cot statement on a survey of mercury in fish and shellfish / Committee on toxicity of chemicals in food consumer products and the environment. 2003. 19 pp.

28. Crowe W., Allsopp P.J., Watson G.E. et al. Mercury as an environmental stimulus in the development of autoimmunity - A systematic review // Autoimmunity Reviews. 2017. Vol. 16. P. 72-80. DOIhttps://doi.org/10.1016/j.autrev.2016.09.020.

29. Depew D.C., Basu N., Burgess N.M. et al. Toxicity of dietary methylmercury to fish: derivation of ecologically meaningful threshold concentrations // Environ. Toxicol. Chem. 2012. Vol. 31. № 7. P. 1536-1547. DOI:https://doi.org/10.1002/etc.1859.

30. Driscoll C.T., Mason R.P., Chan H.M. et al. Mercury as a global pollutant: sources, pathways, and effects // Environ. Sci. Technol. 2013. Vol. 47. № 10. P. 4967-4983. DOI:https://doi.org/10.1021/es305071v.

31. EFSA Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA Journal. 2012. 10(12):2985. 241 p. DOI:https://doi.org/10.2903/j.efsa.2012.2985.

32. FAO. FAO yearbook of Fishery and Aquaculture Statistics 2017 / FAO annuaire. Retrieved November 10, 2020 from: http://www.fao.org/3/ca5495t/CA5495T.pdf.

33. Grandjean P., Weihe P., Burse V.W. et al. Neurobehavioral deficits associated with PCB in 7-year-old children prenatally exposed to seafood neurotoxicants // Neurotoxicology and Teratolog. 2001. Vol. 23. P. № 4. 305-317. DOI:https://doi.org/10.1016/s0892-0362(01)00155-6.

34. Greenfield B.K., Hrabik T.R., Harvey C.J., Carpenter S.R. Predicting mercury levels in yellow perch: use of water chemistry, trophic ecology, and spatial traits. // Can. J. Fish. Aquat. Sci. 2001. Vol. 58. P. 1419-1429.

35. Haines T.A., Komov V.T., Jagoe C.H. Lake acidity and mercury content of fish in Darwin National Reserve, Russia // Environ. Pollut. 1992. Vol. 78. № 1-3. P. 107-112. DOI:https://doi.org/10.1016/0269-7491(92)90017-5.

36. Hawley D.M., Hallinger K.K., Cristol D.A. Compromised immune competence in free-living tree swallows exposed to mercury // Ecotoxicology. 2009. Vol. 18. P. 499-503. DOI:https://doi.org/10.1007/s10646-009-0307-4.

37. Houston M.C. Role of Mercury Toxicity in Hypertension, Cardiovascular Disease, and Stroke // J. Clinical Hypertens. 2011. Vol. 13. № 8. P. 621-628. DOI:https://doi.org/10.1111/j.1751-7176.2011.00489.x.

38. Hui L.L., Chan M.H.M., Lam H.S. et al. Impact of fetal and childhood mercury exposure on immune status in children // Environ. Res. 2016. Vol. 144. Part A. P. 66-72. DOI:https://doi.org/10.1016/j.envres.2015.11.005.

39. Ivanova E.S., Shuvalova O.P., Eltsova L.S. et al. Cardiometabolic risk factors and mercury content in hair of women from a territory distant from mercury-rich geochemical zones (Cherepovets city, Northwest Russia) // Environmental Geochemistry and Health. 2021. Vol. 43. P. 4589-4599. DOI:https://doi.org/10.1007/s10653-021-00939-6.

40. Ivanova E.S., Eltsova L.S., Komov V.T. et al. Assessment of the consumptive safety of mercury in fish from the surface waters of the Vologda region in northwestern Russia //Environ Geochem Health. 2022. DOI:https://doi.org/10.1007/s10653-022-01254-4.

41. Julvez J., Smith G.D., Golding J. et al. Prenatal methylmercury exposure and genetic predisposition to cognitive deficit at age 8 years // Epidemiology (Cambridge, Mass.). 2013. Vol. 24. № 5. P. 643-650. DOI:https://doi.org/10.1097/EDE.0b013e31829d5c93.

42. Kalkan H., Şişman T., Kılıç D. Assessment of heavy metal bioaccumulation in some tissues of Leuciscus cephalus from Karasu River, Erzurum-Turkey // Austin J. Environ. Toxicol. 2015. Vol. 1. № 1. P. 1-6. DOI:https://doi.org/10.1007/s10311-018-0734-7

43. Kruzikova, K., Kensova, R., Sedlackova, L. et al. The correlation between fish mercury liver/muscle ratio and high and low levels of mercury contamination in Czech localities // Int. J. Electrochem. Sci. 2013. Vol. 8. P. 45-56.

44. Landler L., Painter M.S., Coe B.H. et al. High levels of maternally transferred mercury disrupt magnetic responses of snapping turtle hatchlings (Chelydra serpentina) // Environ. Pollut. 2017. Vol. 228. P. 19-25. DOI:https://doi.org/10.1016/j.envpol.2017.04.050.

45. Lewis C.A., Cristol D.A., Swaddle J.P. et al. Decreased immune response in zebra finches exposed to sublethal doses of mercury // Arch. Environ. Contam. Toxicol. 2013. Vol. 64. P. 327-336. DOI:https://doi.org/10.1007/s00244-012-9830-z

46. Li P., Zhang J., Xie H. et al. Heavy metal bioaccumulation and health hazard assessment for three fish species from Nansi Lake, China // Bull. Environ. Contam. Toxicol. 2015. Vol. 94. P. 431-436. DOI:https://doi.org/10.1007/s00128-015-1475-y.

47. Luczynska J., Paszczyk B., Nowosad J., Luczynski M.J. Mercury, Fatty Acids Content and Lipid Quality Indexes in Muscles of Freshwater and Marine Fish on the Polish Market. Risk Assessment of Fish Consumption // International journal of environmental research and public health. 2017. Vol. 14. P. 1120-1136. DOI:https://doi.org/10.3390/ijerph14101120.

48. Marrugo-Negrete J., Verbel J. O., Ceballos E. L., Benitez L. N. Total mercury and methylmercury concentrations in fish from the Mojana region of Colombia // Environmental geochemistry and health. 2008. Vol. 30. № 1. P. 21-30. DOI:https://doi.org/10.1007/s10653-007-9104-2.

49. Milanov D.R., Krstić M., Markovic R. et al. Analysis of heavy metals concentration in tissues of three different fish species included in human diet from Danube River // Acta Vet 2016. Vol. 66. P. 89-102. DOI:https://doi.org/10.1515/acve-2016-0007.

50. Myers G.J., Davidson P.W., Strain J.J. Nutrient and methyl mercury exposure from consuming fish // The Journal of nutrition. 2007. Vol. 137. № 12. P. 2805-2808. DOI:https://doi.org/10.1093/jn/137.12.2805.

51. Nikolić D., Skorić S., Janković S. et al. Age-specific accumulation of toxic metal(loid)s in northern pike (Esox lucius) juveniles // Environ Monit Assess. 2021. Vol.193. P. 229-238. DOI:https://doi.org/10.1007/s10661-021-09004-2.

52. Pal M., Ghosh M. Assay of biochemical compositions of two Indian fresh water eel with special emphasis on accumulation of toxic heavy metals // J. Aqua Food Prod. Technol. 2013. Vol. 22. P. 27-35. DOI:https://doi.org/10.1080/10498850.2011.622070.

53. Rice K.M., Walker E.M., Wu M., Gillette C., Blough E.R. Environmental mercury and its toxic effects // Journal of Preventive Medicine and Public Health. 2014. Vol. 47. № 2. P. 74-83. DOI:https://doi.org/10.3961/jpmph.2014.47.2.74

54. Scheuhammer A.M., Sandheinrich M.B. Recent advances in the toxicology of methylmercury in wildlife // Ecotoxicology. 2008. Vol. 17. P. 67-68. DOI:https://doi.org/10.1007/s10646-007-0186-5.

55. Siraj M., Khisroon M., Khan A. Bioaccumulation of heavy metals in different organs of Wallago attu from River Kabul Khyber Pakhtunkhwa, Pakistan // Biol. Trace Element Res. 2016. Vol. 172. P. 242-250. DOI:https://doi.org/10.1007/s12011-015-0572-4.

56. Sokal R.R., Rohlf F.J. Biometry: the principals and practice of statistics in biological research. New York, USA: W.H. Freeman and Co. 1995. 887 p.

57. Soltani N., Marengo M., Keshavarzi B. et al. Occurrence of trace elements (TEs) in seafood from the North Persian Gulf: Implications for human health // Journal of Food Composition and Analysis. 2021. Vol. 97. 14 p. DOI:https://doi.org/10.1016/j.jfca.2020.103754.

58. Sonesten L. Fish mercury levels in lakes--adjusting for Hg and fish-size covariation // Environmental pollution. 2003. Vol. 125. № 2. P. 255-265. DOI:https://doi.org/10.1016/s0269-7491(03)00051-4.

59. Tchounwou P.B., Ayensu W.K., Ninashvili N., Sutton D. Environmental exposure to mercury and its toxicopathologic implications for public health // Environ. Technol. 2003. Vol. 18. № 3. P. 149-175. DOI:https://doi.org/10.1002/tox.10116

60. UNEP (2011). Executive summary of the document on guidance for identifying populations at risk from mercury exposure. Retrieved November 10, 2020 from: http://www.mercuryconvention.org/Convention/History/INC2/tabid/3435/-language/en-US/Default.aspx

61. UNEP (2013). “Minamata Convention Agreed by Nations”. Retrieved 5 January 2020. https://www.unep.org/news-and-stories/press-release/minamata-convention-agreed-nationssee.

62. United States Environmental Protection Agency (U.S. EPA): Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume 1: Fish Sampling and Analysis Third Edition. (2000). Retrieved November 10, 2020 from: https://www.epa.gov/sites/production/files/2015-06/documents/volume1.pdf

63. Valeraa B., Dewailly E., Poirier P. Association between methylmercury and cardiovascular risk factors in a native population of Qubec (Canada): a retrospective evaluation // Environ. Res. 2013. Vol. 120. P. 102-108. DOI:https://doi.org/10.1016/j.envres.2012.08.002.

64. WHO (2007). Exposure to Mercury: a Major Public Health Concern. Retrieved October 26. 2020. from: https://www.who.int/ipcs/features/mercury.pdf.

65. WHO (2017). Fact sheets / Mercury and health. Retrieved November 10. 2020. https://www.who.int/en/news-room/fact-sheets/detail/mercury-and-health.

66. Yi Y-J, Zhang S-H. Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River // Environ. Sci. Pollut. Res. 2012. Vol. 19. P. 3989-3996. DOI:https://doi.org/10.1007/s11356-012-0840-1.

Login or Create
* Forgot password?