EFFECTS OF SUBLETHAL CONCENTRATIONS OF COPPER AND THERMAL STRESS ON PHYSIOLOGICAL AND BIOCHEMICAL PARAMETERS OF JUVENILE ROACH RUTILIUS RUTILIUS (L.)
Abstract and keywords
Abstract (English):
The effects of 7- and 14-day exposure to water-dissolved Cu at sublethal concentrations 0.01 and 0.1 mg/L and subsequent increase in water temperature at a rate of 8°C/h on intestinal proteolytic activity (PA) and amylolytic activity (AA), as well as brain acetylcholinesterase (AChE) activity and water-soluble protein (WSP) content in juvenile roach Rutilus rutilus have been in vivo studied. Additionally, the values of upper sublethal temperature were determined by the critical thermal maximum (CTM) method. The average values of the CTM (27.5°C) did not differ in fish of control (exposure to 0 μg/L Cu) and Cu-exposed groups. After Cu exposure AA was 22–34% lower, PA was 57–64% lower at Cu concentration 0.01 mg/L, but 27–35% higher at Cu concentration 0.1 mg/L. Subsequent temperature stress did not change the response of proteinases and glycosidases to Cu. An increase in water temperature decreased AA by 21%, AChE activity by 24% in fish of the control group; but increased PA by 32%. AChE activity was 24–28% lower than the control after exposure to Cu (0.1 mg/L and short-term thermal load increased the inhibitory effect of Cu. An increase of WSP content by 36–58% was revealed only after 7 days of exposure to Cu, while temperature stress did not change of the effect. In general, Cu at concentrations found in the aquatic environment can reduce the activity of digestive hydrolases in the intestines of juvenile roach, reducing the rate of assimilation of protein and carbohydrate food components. Inhibition of brain AChE activity is enhanced by subsequent temperature stress. No significant differences were noticed in CTM values in fish of control and Cu-exposed group. The results obtained are important in assessing the environmental risks of chronic exposure to Cu in the zones of thermal pollution of water bodies.

Keywords:
roach, Cu, intestinal proteolytic and amylolytic activities, brain AChE and water-soluble protein, upper sublethal temperature, critical thermal maximum
Text
Publication text (PDF): Read Download
References

1. Golovanov V.K. Temperaturnye kriterii zhiznedeyatel'nosti presnovodnyh ryb. Moskva: Poligraf-Plyus, 2013. 300 s.

2. Perevoznikov M.A., Bogdanova E.A. Tyazhelye metally v presnovodnyh ekosistemah. SPb: GosNIORH, 1999. 228 s.

3. Perechen' rybohozyaystvennyh normativov, predel'no dopustimyh koncentraciy (PDK) i orientirovochno bezopasnyh urovney vozdeystviya (OBUV) vrednyh veschestv dlya vody vodnyh ob'ektov, imeyuschih rybohozyaystvennoe znachenie. Moskva: Vseros. nauchno-issledovatel'skiy in-t ryb. hoz-va i okeanograf. 1999. 304 s.

4. Ugolev A.M., Iezuitova N.N., Masevich C.G., Nadirova T.Ya., Timofeeva N.M. Issledovanie pischevaritel'nogo apparata u cheloveka. Obzor sovremennyh metodov. L.: Nauka. 1969. 216 s.

5. Chuyko G.M., Podgornaya V.A., Mikryakov D.V., Mikryakov V.R. Vliyanie kortikosteroida deksametazona i hendlinga na aktivnost' acetilholinesterazy i soderzhanie vodorastvorimogo belka v mozge sterlyadi Acipenser ruthenus Linneaus // Rybovodstvo i rybolovstvo. 2011. № 7. S.39-43.

6. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding // Anal. Biochem. 1976. Vol. 72. P. 248-254. DOI:https://doi.org/10.1006/abio.1976.9999

7. Chuiko, G.M., Podgornaya, V. A., Zhelnin, Y.Y. Acetylcholinesterase and butyrylcholinesterase activities in brain and plasma of freshwater teleosts: cross-species and cross-family differences // Comp. Biochem. Physiol. 2003. Vol. 135B. № 1. P. 55-61. DOI:https://doi.org/10.1016/s1096-4959(03)00048-4

8. Crawshow L.I., Wollmuth L.P. Effective loci and roles of acetylcholine in temperature regulation of goldfish // Amer. J. Physiol. (Reg. Integr. Comp. Physiol.). 1992. Vol. 263. №. 32. P. 596-601. DOI:https://doi.org/10.1152/ajpregu.1992.263.3.R596

9. de Araújo M.C., Assis C.R.D., Silva L.C., Machado D.C., Silva K.C.C., Lima A.V.A., Carvalho L.B., Jr., de Souza Bezerra R, de Oliveira M.B.M. Brain acetylcholinesterase of jaguar cichlid (Parachromis managuensis): From physicochemical and kinetic properties to its potential as biomarker of pesticides and metal ions // Aquat. Toxicol. 2016. Vol. 177. P. 182-189. DOI:https://doi.org/10.1016/j.aquatox.2016.05.019

10. de Lima D., Roque G. M., de Almeida E.A. In vitro and in vivo inhibition of acetylcholinesterase and carboxylesterase by metals in zebrafish (Danio rerio) // Mar. Environ. Res. 2013. Vol. 91. P. 45-51. DOI:https://doi.org/10.1016/j.marenvres.2012.11.005.

11. Ellman G.L., Courtney K.D., Andres V., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity // Biochem. Pharmacol. 1961. Vol. 70. Iss. 2. P. 88-90. DOI:https://doi.org/10.1016/0006-2952(61)90145-9

12. Gioda C.R., Loro V.L., Pretto A., Salbego J., Dressler V., Flores E. M. M. Sublethal zinc and copper exposure affect acetylcholinesterase activity and accumulation in different tissues of Leporinus obtusidens // Bull. Environ. Contam. Toxicol. 2013. Vol. 90. Iss. 1. P. 12-16. DOI:https://doi.org/10.1007/s00128-012-0896-0

13. Golovanova I.L., Filippov A.A., Chebotareva Yu.V., Krylov V.V. Long-Term consequences of the effect of copper and an electromagnetic field on the size and weight parameters and activity of digestive glycosidases in under yearlings of roach Rutilus rutilus // Inland Water Biol. 2021. Vol. 14. №. 3. P. 331-339. DOI:https://doi.org/10.1134/S1995082921020048

14. Golovanova I.L., Golovanov V.K. Effect of rate of increase of water temperature on sensitivity of fish digestive glycosidases to action of copper and zinc // J. Evol. Biochem. Physiol. 2014. Vol. 50. Iss. 1. P. 27-33. DOI:https://doi.org/10.1134/S0022093014010046

15. Golovanova I.L., Golovanov V.K., Smirnov A.K., Pavlov D.D. Effect of ambient temperature increase on intestinal mucosa amylolytic activity in freshwater fish // Fish Physiol. Biochem. 2013. Vol. 39. № 6. P. 1497-1504. DOI:https://doi.org/10.1007/s10695-013-9803-9

16. Jiang H., Kong X., Wang S., Guo H. Effect of copper on growth, digestive and antioxidant enzyme activities of juvenile Qihe crucian carp, Carassius carassius, during exposure and recovery // Bull. Environ. Contam. Toxicol. 2016. Vol. 96. № 3. P. 333-340. DOIhttps://doi.org/10.1007/s00128-016-1738-2

17. Kirby M.F., Morris S., Hurst M., Kirby S.J., Neall P., Tylor T., Fagg A. The Use of Cholinesterase Activity in Flounder (Platichthys flesus) Muscle Tissue as a Biomarker of Neurotoxic Contamination in UK Estuaries // Mar. Pollut. Bull. 2000. Vol. 40. № 9. P. 780-791. DOI:https://doi.org/10.1016/S0025-326X(00)00069-2

18. Krylov V.V., Chebotareva Y.V., Izyumov Y.G. Delayed consequences of the influence of simulated geomagnetic storms on roach Rutilus rutilus embryos // J. Fish Biol. 2019. Vol. 95. Iss. 6. P. 1422-1429. DOI:https://doi.org/10.1111/jfb.14150

19. Kumar B.N.G., Nandun S.B. Effect of copper on the humoral and biochemical indices of the teleost fish, Anabas testudineus (Bloch, 1792) // Walailak J. Sci. Tech. 2014. Vol. 11. № 10. P. 871-882. DOI:https://doi.org/10.2004/wjst.v11i9.678

20. Kuz’mina V.V. Digestion in fish: A new view. Balty: Lambert, 2017. 310 r.

21. Kuz’mina V.V., Skvortsova E.G., Pivovarova E.A., Bushkareva A.S., Vostrova U.A., Poltoratskaya A.V. Influence of sapropel on the activity of intestinal peptidases of broiler chickens // J. Indonesian Trop. Anim. Agric. 2021. Vol. 46. № 1. P. 67-74. DOIhttps://doi.org/10.14710/jitaa.46.1.67-74

22. Nunes B. The use of cholinesterases in ecotoxicology // Rev. Environ. Contam. Toxicol. 2011. Vol. 212. P. 29-59. DOI:https://doi.org/10.1007/978-1-4419-8453-1_2https://doi.org/10.1007/978-1-4419-8453-1_2

23. Pavlov D.F., Chuiko G.M., Shabrova A.G. Adrenaline induced changes of acetylcholinesterase activity in the brain of perch (Perca fluviatilis L.) // Comp. Biochem. Physiol. 1994. Vol. 108C. № 1. P. 113-115. DOI:https://doi.org/10.1016/1367-8280(94)90096-5

24. Sokolova I.M., Lannig G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change // Clim. Res. 2008. Vol. 37. P. 181-201. DOI:https://doi.org/10.3354/cr00764

25. Sturn A., Silva de Assis H.C., Hansen P.-D. Cholinesterases of marine teleost fish: enzymological characterization and potential use in the monitoring of neurotoxic contamination // Mar. Environ. Res. 1999. Vol. 47. P. 389-398. DOI:https://doi.org/10.1016/S0141-1136(98)00127-5

26. Talikina M.G., Krylov V.V., Izyumov Y.G., Chebotareva Yu.V. The effect of a typical magnetic storm on mitosis in the embryo cells and the length and weight of roach (Rutilus rutilus L.) prolarvae // Inland Water Biol. 2013. Vol. 6. № 1. P. 48-51. DOI:https://doi.org/10.1134/S1995082912030145

27. Tlili S., Jebali J., Banni M., Haouas Z., Mlayah A., Helal A.N., Boussetta H. Multimarker approach analysis in common carp Cyprinus carpio sampled from three freshwater sites // Environ. Monit. Assess. 2010. Vol. 168. P. 285-298. DOI:https://doi.org/10.1007/s10661-009-1112-5

28. Zebral Y.D., Roza M., Fonseca J.S., Costa P.G., Stürmer C.O., Zocke T.G., Pizzol J.L.D., Robaldo R.B., Bianchini A. Waterborne copper is more toxic to the killifish Poecilia vivipara in elevated temperatures: Linking oxidative stress in the liver with reduced organismal thermal performance // Aquat. Toxicol. 2019. Vol. 209. P. 142-149. DOI:https://doi.org/10.1016/j.aquatox.2019.02.005.

29. Zhang J.L., Fang L., Song J.Y., Luo X., Fu K.D., Chen L.Q. Health risk assessment of heavy metals in Cyprinus carpio (Cyprinidae) from the upper Mekong River // Environ. Sci. Pollut Res. 2019. Vol. 26. Iss. 10. P. 9490-9499. DOI:https://doi.org/10.1007/s11356-019-04291-2.

Login or Create
* Forgot password?