VAC 03.03.00 Физиология
UDK 57 Биологические науки
In an isolating experiment on feeding only on arthropods of terrestrial origin, the potential of their consump-tion by amphipods from a fishless water-course is studied. The data obtained confirm the hypothesis that, on the basis of experiments on feeding exclusively on arthropods, it is possible to determine the maximum proportion of their biomass that selected consumers are able to utilize. The results of such works can be used to quantitative assessment of the level of possible losses of allochthonous matter and energy for the recipient communities of waterbodies due to feeding activity of consumers from their tributaries. Assessments of this kind may be relevant when deciding on the food availability for juvenile salmonids, inhabiting recipient waterbodies.
allochthonous matter and energy, food base for fish, amphipods
1. Alimov A.F., Bogatov V.V., Golubkov S.M. Produkcionnaya gidrobiologiya. SPb: Nauka, 2013. 342 s.
2. Astahov M.V., Hamatova A.Yu., Fenenko A.A. i dr. Drift amfipody Gammarus koreanus Uéno, 1940 v klyuche Yaponskom (buhta Kievka Yaponskogo morya) // Chteniya pamyati V.Ya. Levanidova, vyp. 6. Vladivostok: Dal'nauka, 2014.C. 59-65.
3. Beklemishev V.N. Sutochnye migracii bespozvonochnyh v komplekse nazemnyh biocenozov // Tr. Perm. biol. NII pri Perm. un-te. 1934. T. 6. №. 3-4. S. 119-208.
4. Berezina N.A., Maksimov A.A. Kolichestvennye harakteristiki i pischevye predpochteniya bokoplavov (Crustacea: Amphipoda) v vostochnoy chasti Finskogo zaliva Baltiyskogo morya // Zhurn. SFU. Biologiya. 2016. T. 9, № 4. S. 409-426. DOI:https://doi.org/10.17516/1997-1389-2016-9-4-409-426
5. Bigon M., Harper Dzh., Taunsend K. Ekologiya. Osobi, populyacii i soobschestva. T. 1. M.: Mir, 1989. 667 s.
6. Bogatov V.V. Ekologiya rechnyh soobschestv rossiyskogo Dal'nego Vostoka. Vladivostok: Dal'nauka, 1994. 218 s.
7. Zhadin V.I. Fauna rek i vodohranilisch // Tr. ZIN AN SSSR. 1940. T. 5, vyp. 3-4. 992 s.
8. Metody opredeleniya produkcii vodnyh zhivotnyh / Pod red. G.G. Vinberga. Minsk: Vysheysha shkola, 1968. 246 s.
9. Propp L.N., Kashenko S.D., Propp M.V. Opredelenie osnovnyh biogennyh elementov // Metody himicheskogo analiza v gidrobiologicheskih issledovaniyah. Vladivostok: DVNC AN SSSR, 1979. S. 63-88.
10. Tiunova T.M., Hleborodov A.S., Tiunov I.M. Nekotorye aspekty pitaniya i raspredeleniya Gammarus koreanus Uéno, 1940 (Crustacea, Amphipoda) v reke Kedrovaya (Yuzhnoe Primor'e) // Chteniya pamyati V.Ya. Levanidova, vyp. 2. Vladivostok: Dal'nauka, 2003. S. 117-126.
11. Agatz A., Brown C.D. Variability in feeding of Gammarus pulex: moving towards a more standardised feeding assay // Environ. Sci. Eur. 2014. Vol. 26. № 15. P. 1-9. DOI:https://doi.org/10.1186/s12302-014-0015-4
12. Astakhov M.V. The dynamics of terrestrial invertebrate inputs to the food web of a small salmon river // Contemp. Probl. Ecol. 2016. Vol. 9. P. 474-480. DOI:https://doi.org/10.1134/S1995425516040028
13. Baxter C.V., Fausch K.D., Saunders W.C. Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones // Freshw. Biol. 2005. Vol. 50. P. 201-220. DOI:https://doi.org/10.1111/j.1365-2427.2004.01328.x
14. Beauchamp R.S.A. Rate of movement and rheotaxis in Planaria alpina // J. Exp. Biol. 1937. Vol. 14. P. 104-116.
15. Bovill W.D., Downes B.J., Lake P.S. A novel method reveals how channel retentiveness and stocks of detritus (CPOM) vary among streams differing in bed roughness // Freshw. Biol. 2020. Vol. 65. P. 1-12. DOI:https://doi.org/10.1111/fwb.13496
16. Chambord S., Tackx M., Chauvet E. et al. Two microcrustaceans affect microbial and macroinvertebrate-driven litter breakdown // Freshw. Biol. 2017. Vol. 62. P. 530-543. DOI:https://doi.org/10.1111/fwb.12883
17. Chertoprud M.V., Chertoprud E.S., Vorob’eva L.V. et al. Macrozoobenthic communities of the piedmont and lowland watercourses of the Lower Amur Region // Inland Water Biol. 2020. Vol. 13. № 1. P. 51-61. DOI:https://doi.org/10.1134/S1995082920010046
18. Dick J.T. The cannibalistic behaviour of two Gammarus species (Crustacea: Amphipoda) // J. Zool. 1995. Vol. 236. № 4. P. 697-706. DOI:https://doi.org/10.1111/j.1469-7998.1995.tb02740.x
19. Frost P.C., Elser J.J. Growth responses of littoral mayflies to the phosphorus content of their food // Ecol. Lett. 2002. Vol. 5. P. 232-240. DOI:https://doi.org/10.1046/j.1461-0248.2002.00307.x
20. Gergs R., Rothhaupt K.-O. Feeding rates, assimilation efficiencies and growth of two amphipod species on biodeposited material from zebra mussels // Freshw. Biol. 2008. Vol. 53. P. 2494-2503. DOI:https://doi.org/10.1111/j.1365-2427.2008.02077.x
21. Groom A., Hildrew A.G. Food quality for detritivores in streams of contrasting pH // J. Anim. Ecol. 1989. Vol. 58. P. 863-881. DOI:https://doi.org/10.2307/5129
22. Ironside J.E., Dalgleish S.T., Kelly S.J. et al. Sex or food? Effects of starvation, size and diet on sexual cannibalism in the amphipod crustacean Gammarus zaddachi // Aquat. Ecol. 2019. Vol. 53. P. 1-7. DOI:https://doi.org/10.1007/s10452-018-9668-1
23. Kelly D.W., Dick J.T.A., Montgomery W.I. The functional role of Gammarus (Crustacea, Amphipoda): shredders, predators, or both? // Hydrobiologia. 2002. Vol. 485. P. 199-203. DOI:https://doi.org/10.1023/A:1021370405349
24. Lau D.C.P, Leung K.M.U., Dudgeon D. Experimental dietary manipulations and concurrent use of assimilation-based analyses for elucidation of consumer-resource relationships in tropical streams // Mar. Freshw. Res. 2008. Vol. 59. №. 11. P. 963-970. DOI:https://doi.org/10.1071/MF07213
25. Lotrich V.A. Growth, production, and community composition of fishes inhabiting a first-, second-, and third-order stream of Eastern Kentucky // Ecol. Monogr. 1973. Vol. 43. №. 3. P. 377-397. DOI:https://doi.org/10.2307/1942347
26. Minshall G.W. Role of allochthonous detritus in the trophic structure of a woodland springbrook community // Ecology. 1967. Vol. 48. №. 1. P. 139-149. DOI:https://doi.org/10.2307/1933425
27. Nakano S., Murakami M. Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs // Proc. Natl. Acad. Sci. U.S.A. 2001. Vol. 98. № 1. P. 166-170. DOI:https://doi.org/10.1073/pnas.98.1.166
28. Reshetnikov Y.S., Tereshchenko V.G. Quantitative level of research in fish ecology and errors associated with it // Russ. J. Ecol. 2017. Iss. 48. P. 233-239. DOI:https://doi.org/10.1134/S1067413617030146
29. Reynoldson T.B. The distribution and abundance of lake-dwelling triclads - towards a hypothesis // Adv. Ecol. Res.1966. Vol. 3. P. 1-71. DOI:https://doi.org/10.1016/S0065-2504(08)60309-8
30. Reynoldson T.B. The population biology of Turbellaria with special reference to the freshwater triclads of the British Isles // Adv. Ecol. Res. 1983. Vol. 13. P. 235-326. DOI:https://doi.org/10.1016/S0065-2504(08)60110-5
31. Richardson J.S., Moore R.D. Stream and riparian ecology // Compendium of forest hydrology and geomorphology in British Columbia. Kamloops, B.C. Land Manage. Handb., 2010. Vol. 2. P. 441-460.
32. Vannote R.L., Minshall G.W., Cummins K.W. et al. The River Continuum Concept // Can. J. Fish. Aquat. Sci. 1980. Vol. 37. P. 130-137. DOI:https://doi.org/10.1139/f80-017
33. Wipfli M.S., Gregovich D.P. Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production // Freshw. Biol. 2002. Vol. 47. P. 957-969. DOI:https://doi.org/10.1046/j.1365-2427.2002.00826.x
34. Young J.O., Reynoldson T.B. Continuing dispersal of freshwater triclads (Platyhelminthes; Turbellaria) in Britain with particular reference to lakes // Freshw. Biol. 1999. Vol. 42. P. 247-262. DOI:https://doi.org/10.1046/j.1365-2427.1999.444488.x
35. Zhang Y.X, Richardson J.S. Contrasting effects of cross-ecosystem subsidies and predation on benthic invertebrates in two Pacific coastal streams // Aquat. Sci. 2011. Vol. 73. P. 53-62. DOI:https://doi.org/10.1007/s00027-010-0159-2