This paper examines the functions of proteinase inhibitors in the blood plasma of Atlantic cod Gadus Morhua using Gene Ontology terms and literature sources, including the authors' work. The main properties of proteinase inhibitors, their mechanisms of action, and their impact on various physiological processes are discussed.
proteinase inhibitors, Atlantic cod, blood serum, osmotically active proteins, electrophoresis, MALDI, gene ontology
1. Andreeva A.M. Kriterii poiska belkov s vysokoy osmoticheskoy aktivnost'yu v krovi bezal'buminovyh kostistyh ryb // Biologiya vnutrennih vod, 2025. (v pech.)
2. Bazarova Z.M., Toropygin I.Yu., Vasil'ev A.S. i dr. Poisk i identifikaciya osmoticheski aktivnyh belkov v syvorotke krovi atlanticheskoy treski Gadus morhua // Trudy Instituta biologii vnutrennih vod im. I.D. Papanina RAN. 2022. Vyp. 99(102). S. 88–92. DOI:https://doi.org/10.47021/0320-3557-2022-88-92.
3. Bazarova Z.M., Vasil'ev A.S., Pavlova P.A., Toropygin I.Yu., Andreeva A.M. Analiz terminov gennoy ontologii dlya belkov s vysokoy osmoticheskoy aktivnost'yu iz syvorotki krovi atlanticheskoy treski Gadus morhua // Trudy Instituta biologii vnutrennih vod im. I.D. Papanina RAN. 2024. Vyp. 106(109). S. 75–85. DOI:https://doi.org/10.47021/0320-3557-2024-75-85.
4. Brodskaya O.N. Nasledstvennaya nedostatochnost' al'fa-1-antitripsina // Prakticheskaya pul'monologiya. 2008, №4. S. 58–59. URL: https://cyberleninka.ru/article/n/nasledstvennaya-nedostatochnost-alfa-1-antitripsina
5. Yarec Yu.I. Specificheskie belki: prakticheskoe posobie dlya vrachey: v 2 chastyah. Chast' II. Kliniko-diagnosticheskoe znachenie opredeleniya specificheskih belkov. Gomel': GU “RNPC RMiECh”, 2015. 47 s.
6. Andreeva A.M. Structural Organization of Plasma Proteins as a Factor of Capillary Filtration in Pisces // Inland Water Biology. 2020. Vol. 13(4). P. 664–673. DOI:https://doi.org/10.1134/S1995082920060036.
7. Andreeva A.M. Organization and function of osmotically active fraction of fish (Pisces) plasma proteome // Inland Water Biology. 2021. vol. 14(4). P. 449–460. DOI:https://doi.org/10.1134/S1995082921040039.
8. Andreeva A.M. Evolutionary transformations of albumin using the example of model species of jawless Agnatha and bony jawed fish (review) // Inland Water Biology. 2022. Vol. 15(5). P. 641–658. DOI:https://doi.org/10.1134/S1995082922050029.
9. Andreeva A.M., Bazarova Z.M., Toropygin I.Yu. et al. Serum osmotically active proteins in the Atlantic cod Gadus morhua // J. Evol. Biochem.Physiol. 2023. Vol. 59. P. 325–336. DOI:https://doi.org/10.1134/S0022093023020023.
10. Anguizola J., Matsuda R., Barnaby O.S. et al. Review: Glycation of human serum albumin // Clin. Chim. Acta. 2013. Vol. 425. P. 64–76.
11. Braasch I., Gehrke A.R., Smith J.J. et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons // Nat. Genet. 2016. Vol. 48. № 4. P. 427–437.
12. Engler R. Protéines de la réaction inflammatoire. Fonctions régulatrices [Proteins of the inflammatory reaction. Regulatory functions] // Ann. Biol. Clin. (Paris). 1988. Vol. 46, № 5. P. 336–342. French. PMID: 2458687.
13. Hughes D., Goldschmidt M.H., Washabau R.J., Kueppers F. Serum alpha 1-antitrypsin concentration in dogs with panniculitis // J. Am. Vet. Med. Assoc. 1996. Vol. 209(9). P. 1582–1584.
14. Jančauskiene S., Conformational properties of serine proteinase inhibitors (serpins) determine their numerous pathophysiological functions // Biochim. Biophys. Acta. Mol. Basis Dis., 2001. Vol. 1535, № 3. P. 221–235. DOI:https://doi.org/10.1016/s0925-4439(01)00025-4.
15. Kawashita E., Ishihara K., Miyaji H. et al. α2-Antiplasmin as a potential regulator of the spatial memory process and age-related cognitive decline // Mol. Brain. 2020. Vol. 13. P. 140. DOI:https://doi.org/10.1186/s13041-020-00677-3.
16. Lee K.N., Jackson K.W., Christiansen V.J., Chung K.H., McKee P.A. Alpha2-antiplasmin: potential therapeutic roles in fibrin survival and removal // Curr. Med. Chem. Cardiovasc. Hematol. Agents. 2004. Vol. 2(4). P. 303–310. DOI:https://doi.org/10.2174/1568016043356228.
17. Li C., Gao C., Fu Q. et al., Identification and expression analysis of fetuin b (FETUB) in turbot (Scophthalmus maximus L.) mucosal barriers following bacterial challenge // Fish Shellfish Immunol. 2017. Vol. 68. P. 386–394. DOI:https://doi.org/10.1016/j.fsi.2017.07.032.
18. Lieb W., Chen M.H., Teumer A. et al. Genome-wide meta-analyses of plasma renin activity and concentration reveal association with the kininogen 1 and prekallikrein genes // Circ. Cardiovasc Genet. 2015. Vol. 8(1). P. 131–140. DOI:https://doi.org/10.1161/CIRCGENETICS.114.000613.
19. Liu F., Su B., Gao C., et al., Identification and expression analysis of TLR2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge // Fish Shellfish Immunol. 2016. Vol. 55. P. 654–661. DOI:https://doi.org/10.1016/j.fsi.2016.06.047.
20. Mathews S.T., Deutsch D.D., Iyer G. et al. Plasma alpha2-HS glycoprotein concentrations in patients with acute myocardial infarction quantified by a modified ELISA // Clin. Chim. Acta. 2002. Vol. 319(1). P. 27–34. DOI:https://doi.org/10.1016/s0009-8981(02)00013-x.
21. Miehle K., Ebert T., Kralisch S. et al. Serum concentrations of fetuin B in lipodystrophic patients // Cytokine. 2018. Vol. 106. P. 165–168. DOI:https://doi.org/10.1016/j.cyto.2017.10.028.
22. Noel E.S., Reis M., Arai Z., Ober E.A. Analysis of the Albumin/α-Fetoprotein/Afamin/Group specific component gene family in the context of zebrafish liver differentiation // Gene Expression Patterns. 2010. Vol. 10(6). P. 237–243. DOI:https://doi.org/10.1016/j.gep.2010.05.002.
23. Nynca J., Slowinska M., Dietrich M. et al. Isolation and identification of fetuin-B-like protein from rainbow trout seminal plasma and its localization in the reproductive system // Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2010. Vol. 158(1). P. 106–116. DOI:https://doi.org/10.1016/j.cbpb.2010.10.002.
24. Nynca J., Arnold G., Fröhlich T., Ciereszko A. Proteomic identification of rainbow trout blood plasma proteins and their relationship to seminal plasma proteins // Proteomics. 2017. Vol. 17(11). P. 1–15. DOI:https://doi.org/10.1002/pmic.201600460.
25. Ohno S. Evolution by Gene Duplication. Berlin; New York: Springer-Verlag, 1970. 160 p. DOI:https://doi.org/10.1007/978-3-642-86659-3.
26. Pasquier J., Cabau C., Nguyen T. et al. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database // BMC Genomics. 2016. Vol. 17(368). P. 1–10. DOI:https://doi.org/10.1186/s12864-016-2709-z.
27. Sandri A., Boschi F. Exploring Proteases as Alternative Molecular Targets to Tackle Inflammation in Cystic Fibrosis Respiratory Infections // Int. J. Mol. Sci. 2025. Vol. 26(5). e1871. DOI:https://doi.org/10.3390/ijms26051871.
28. Srinivas P.R., Wagner A.S., Reddy L.V. et al. Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level // Mol. Endocrinol. 1993. Vol. 7(11). P. 1445–1455. DOI:https://doi.org/10.1210/mend.7.11.7906861.
29. Stein P.E., Carrell R.W. What do dysfunctional serpins tell us about molecular mobility and disease? // Nat. Struct. Biol. 1995. Vol. 2(2). P. 96–113. DOI:https://doi.org/10.1038/nsb0295-96.
30. Talens S., Malfliet J.J., van Hal P.T., Leebeek F.W., Rijken D.C. Identification and characterization of α1 -antitrypsin in fibrin clots // J. Thromb. Haemost. 2013. Vol. 11(7). P. 1319–1328. DOI:https://doi.org/10.1111/jth.12288.
31. Travis J., Salvesen G. Control of coagulation and fibrinolysis by plasma proteinase inhibitors // Behring Inst. Mitt. 1983. Vol. 73. R. 56–65.
32. Travis J., Shieh B.H., Potempa J. The functional role of acute phase plasma proteinase inhibitors // Tokai J. Exp. Clin. Med. 1988. Vol. 13(6). P. 313–320.
33. Wang F., Yu J., Qiu Q.H., Bai L., Cao H. Kininogen-1 and insulin-like growth factor binding protein-6 as serum biomarkers for proliferative vitreoretinopathy // Zhonghua Yan Ke Za Zhi. 2010. Vol. 46(7). P. 609–614.
34. White A., Hendler F., Smith E., Hill R., Lehman I. Fundamentals of Biochemistry. Moscow, Mir, 1981. Vol. 3, pp. 1180.



