УДК 577.112.3 Аминокислоты и соединения аминокислот
В обзоре собраны сведения об участии аминокислот и дипептидов в поддержании осмотического гомеостаза у низших водных позвоночных – рыб (элазмобранхий, осетрообразных, костистых рыб) и бесчелюстных рыбообразных (миног, миксин). Основное внимание уделяется роли аминокислот как “совместимых осмолитов”, помогающих биологическим макромолекулам сохранять свою нативную конформацию и функции в условиях повышенной ионной силы. Также рассмотрены энергетическая роль аминокислот и роль промежуточных метаболитов. Результаты проведенной работы показали, что в качестве осмолитов в рассмотренных таксонах наиболее важную роль играют аминокислоты таурин, бета-аланин, саркозин и глицин, а после них – аланин, глутамат, глутамин и пролин. Обсуждается возможная роль гистидиновых дипептидов и дипептида лизин-пролин, для установления которой требуются дальнейшие исследования.
осмотический гомеостаз, рыбы, осмолиты, аминокислоты, дипептиды
1. Пегова А.Н. Динамика дипептида анзерина в мышцах молоди семги (Salmo Salar) при повышении солености среды // Труды Беломорской биологической станции. 2002. № 8. С. 167-175.
2. Assem H., Hanke W. The significance of the amino acids during osmotic adjustment in teleost fish - I. Changes in the euryhaline Sarotherodon mossambicus // Comp. Biochem. Physiol. A. 1983. Vol. 74. № 3. P. 531-536. DOI:https://doi.org/10.1016/0300-9629(83)90543-1.
3. Ballantyne J.S., Fraser D.I. Euryhaline elasmobranchs // Fish Physiol. 2012. Vol. 32. P. 125-198. DOI:https://doi.org/10.1016/B978-0-12-396951-4.00004-9.
4. Ballantyne J.S., Moyes C., Moon T.W. Osmolarity affects oxidation of sarcosine by isolated hepatocytes and mitochondria from a euryhaline elasmobranch // J. Exp. Zool. 1986. Vol. 238. P. 267-271. DOI:https://doi.org/10.1002/jez.1402380217.
5. Ballantyne J.S., Robinson J.W. Freshwater elasmobranchs: a review of their physiology and biochemistry // J. Comp. Physiol. B. 2010. Vol. 180. P. 475-493. DOI:https://doi.org/10.1007/s00360-010-0447-0.
6. Ballatori N., Boyer J.L. Taurine transport in skate hepatocytes II. Volume activation, energy, and sulfhydryl dependence // Am. J. Physiol. 1992. Vol. 262. P. G451-G460. DOI:https://doi.org/10.1152/ajpgi.1992.262.3.G451.
7. Bedford J.J. The effect of reduced salinity on tissue and plasma composition of the dogfish, Squalus acanthias // Comp. Biochem. Physiol. 1983. Vol. 76A. № I. P. 81-84. DOI:https://doi.org/10.1016/0300-9629(83)90296-7.
8. Benskin J. P., Ikonomou M.G., Liu J., Veldhoen N., Dubetz C., Helbing C.C., Cosgrove J.R. Distinctive metabolite profiles in in-migrating sockeye salmon suggest sex-linked endocrine perturbation // Environ. Sci. Technol. 2014. Vol. 48. P. 11670−11678. DOI:https://doi.org/10.1021/es503266x.
9. Bolen D.W. Protein stabilization by naturally occurring osmolytes // Methods in Mol. Biol. 2001. Vol. 168. P. 17-36. DOI:https://doi.org/10.1385/1-59259-193-0:017.
10. Burg M.B., Ferraris J.D. Intracellular organic osmolytes: function and regulation // J. Biol. Chem. 2008. Vol. 283. №. 12. P. 7309-7313. DOI:https://doi.org/10.1074/jbc.R700042200.
11. Bystriansky J.S., Frick N.T., Ballantyne J.S. Intermediary metabolism of Arctic char Salvelinus alpinus during short-term salinity exposure // J. Exp. Biol. 2007. Vol. 210. P. 1971-1985. DOI:https://doi.org/10.1242/jeb.000059.
12. Chang E. W.Y., Loong A.M., Wong W.P., Chew S.F., Wilson J.M., Ip Y.K. Changes in tissue free amino acid contents, branchial Na+/K+-ATPase activity and bimodal breathing pattern in the freshwater climbing perch, Anabas testudineus (Bloch), during seawater acclimation // J. Exp. Zool. Part. A Ecol. Genet. Physiol. 2007. Vol. 307. P. 708-723. DOI:https://doi.org/10.1002/jez.a.424.
13. Chew S.F., Tng Y.Y.M., Wee N.L.J., Tok C.Y., Wilson J.M., Ip Y.K. Intestinal osmoregulatory acclimation and nitrogen metabolism in juveniles of the freshwater marble goby exposed to seawater // J. Comp. Physiol. B. 2010. Vol. 180. № 4. P. 511-520. DOI:https://doi.org/10.1007/s00360-009-0436-3.
14. Chew S.F., Tng Y.Y.M., Wee N.L.J., Wilson J.M., Ip Y.K. Nitrogen metabolism and branchial osmoregulatory acclimation in the juvenile marble goby, Oxyeleotris marmorata, exposed to seawater // Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 2009. Vol. 154. № 3. P. 360-369. DOI:https://doi.org/10.1016/j.cbpa.2009.07.005.
15. Cholette C., Gagnon A., Germain P. Isosmotic adaptation in Myxine glutinosa L. - I. Variations of some parameters and role of the amino acid pool of the muscle cells // Comp. Biochem. Physiol. 1970. Vol. 33. P. 333-346. DOI:https://doi.org/10.1016/0010-406X(70)90354-3
16. Chow S.C., Ching L.Y., Wong A.M.F., Wong C.K.C. Cloning and regulation of expression of the Na+-Cl--taurine transporter in gill cells of freshwater Japanese eels // J. Exp. Biol. 2009. Vol. 212. P. 3205-3210. DOI:https://doi.org/10.1242/jeb.031302.
17. Con P., Nitzan T., Slosman T., Cnaani A. Water salinity and postprandial effects on transcription of peptide and amino acid transporters in the kidney of Mozambique tilapia (Oreochromis mossambicus) // Aquaculture. 2021. Vol. 536. № 15. P. 736384-736392. DOI:https://doi.org/10.1016/j.aquaculture.2021.736384.
18. Daikoku T., Sakaguchi M. Effects of dietary trimethylamine on free amino acid and nonprotein nitrogen levels in muscle of the guppy, Poecilia reticulata, in relation to seawater adaptation // Comp. Biochem. Physiol., Part A.: Mol. Integr. Physiol. 1983. Vol. 75. № 3. P. 343-346. DOI:https://doi.org/10.1016/0300-9629(83)90091-9.
19. Dowd W.W., Harris B.N., Cech J.J.Jr, Kültz D. Proteomic and physiological responses of leopard sharks (Triakis semifasciata) to salinity change // J. Exp. Biol. 2010. Vol. 213. P. 210-224. DOI:https://doi.org/10.1242/jeb.031781.
20. Edwards S.L., Marshall W.S. Principles and patterns of osmoregulation and euryhalinity in fishes // Fish Physiol. 2012. Vol. 32. P. 1-44. DOI:https://doi.org/10.1016/B978-0-12-396951-4.00001-3.
21. Fiess J.C., Kunkel-Patterson A., Mathias L., Riley L.G., Yancey P.H., Hirano T., Grau E.G. Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromis mossambicus) // Comp. Biochem. Physiol., Part A.: Mol. Integr. Physiol. 2007. Vol. 146. P. 252-264. DOI:https://doi.org/10.1016/j.cbpa.2006.10.027.
22. Fiol D.F., Chan S.Y., Kültz D. Identification and pathway analysis of immediate hyperosmotic stress responsive molecular mechanisms in tilapia (Oreochromis mossambicus) gill // Comp. Biochem. Physiol., Part D: Genomics Proteomics. 2006. Vol. 1. P. 344-356. DOI:https://doi.org/10.1016/j.cbd.2006.08.002.
23. Forster R.P., Goldstein L. Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs // Am. J. Physiol. 1976. Vol. 230. № 4. P. 925-931. DOI:https://doi.org/10.1152/ajplegacy.1976.230.4.925.
24. Forster R.P., Hannafin J.A. Osmotoc and cell volume regulation in atrium and ventricle of the elasmobranch skate, Raja erinacea // Comp. Biochem. Physiol. 1980. Vol. 65A. P. 445-451. DOI:https://doi.org/10.1016/0300-9629(80)90057-2.
25. Forster R.P., Hannafin J.A., Goldstein L. Osmoregulatory role of amino acids in brain of the elasmobranch, Raja erinacea // Comp. Biochem. Physiol. 1978. Vol. 60A. P. 25-30. DOI:https://doi.org/10.1016/0300-9629(78)90032-4 .
26. Gao J., Xu G., Xu P. Gills full-length transcriptomic analysis of osmoregulatory adaptive responses to salinity stress in Coilia nasus // Ecotoxicology and Environmental Safety. 2021. Vol. 226. P. 112848-112859. DOI:https://doi.org/10.1016/j.ecoenv.2021.112848.
27. Glover C.N., Blewett T.A., Wood C.M. Effect of environmental salinity manipulation on uptake rates and distribution patterns of waterborne amino acids in the Pacific hagfish // Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 2017. Vol. 204. P. 164-168. DOI:https://doi.org/10.1016/j.cbpa.2016.11.021.
28. Goldstein L., Brill S.R. Volume-activated taurine efflux from skate erythrocytes possible band 3 involvement // Am. J. Physiol. 1991. Vol. 260 (5 Pt 2). P. R1014-R1020. DOI:https://doi.org/10.1152/ajpregu.1991.260.5.R1014.
29. Goldstein L., Brill S.R., Freund E.V. Activation of taurine efflux in hypotonically stressed elasmobranch cells: inhibition by stilbene disulfonates // J. Exp. Zool. 1990. Vol. 254. P. 114-118. DOI:https://doi.org/10.1002/jez.1402540116.
30. Goldstein L., Koomoa D.-L., Musch M.W. ATP release from hypotonically stressed skate RBC: potential role in osmolyte channel regulation // J. Exp. Zool. 2003. Vol. 296A. P. 160-163. DOI:https://doi.org/10.1002/jez.a.10228.
31. Hajirezaee S., Mirvaghefi A.R., Farahmand H., Agh N. NMR-based metabolomic study on the toxicological effects of pesticide, diazinon on adaptation to sea water by endangered Persian sturgeon, Acipenser persicus fingerlings // Chemosphere. 2017. Vol. 185. P. 213-226. DOI:https://doi.org/10.1016/j.chemosphere.2017.07.016.
32. Haynes J.K., Goldstein L. Volume-regulatory amino acid transport in erythrocytes of the little skate, Raja erinacea // Am. J. Physiol. 1993. Vol. 265 (Regulatory Integrative Comp. Physiol. 34). P. R173-R179. DOI:https://doi.org/10.1152/ajpregu.1993.265.1.R173.
33. Hedén I., Sundell K., Jönsson E., Sundh H. The role of environmental salinity on Na+-dependent intestinal amino acid uptake in rainbow trout (Oncorhynchus mykiss) // Sci. Rep. 2022. Vol. 12. 22205. DOI:https://doi.org/10.1038/s41598-022-26904-6.
34. Huang P.-C., Liu T.-Y., Hu M.Y., Casties I., Tseng Y.-C. Energy and nitrogenous waste from glutamate/glutamine catabolism facilitates acute osmotic adjustment in non-neuroectodermal branchial cells // Sci. Rep. 2020. Vol. 10. 9460. DOI:https://doi.org/10.1038/s41598-020-65913-1.
35. Huggins A.K., Colley L. The changes in the non-protein nitrogenous constituents of muscle during the adaptation of the eel Anguilla anguilla from fresh water to sea water // Comp. Biochem. Physiol. 1971. Vol. 38B. P. 537-541. DOI:https://doi.org/10.1016/0305-0491(71)90310-5.
36. Ip Y.K., Loong A.M., Ching B., Tham G.H.Y., Wong W.P., Chew S.F. The freshwater Amazonian stingray, Potamotrygon motoro, up-regulates glutamine synthetase activity and protein abundance, and accumulates glutamine when exposed to brackish (15‰) water // J. Exp. Biol. 2009. Vol. 212. P. 3828-3836. DOI:https://doi.org/10.1242/jeb.034074.
37. Jarvis P.L., Ballantyne J.S. Metabolic responses to salinity acclimation in juvenile shortnose sturgeon Acipenser brevirostrum // Aquaculture. 2003. Vol. 219. P. 891-909. DOI:https://doi.org/10.1016/S0044-8486(03)00063-2.
38. Jiang J.-L., Xu J., Ye L., Sun M.-L., Jiang Z.-Q., Mao M.-G. Identification of differentially expressed genes in gills of tiger puffer (Takifugu rubripes) in response to low-salinity stress // Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 2020. P. 243-244. 110437. DOI:https://doi.org/10.1016/j.cbpb.2020.110437.
39. Jiang W., Tian X., Fang Z., Li L., Dong S., Li H., Zhao K. Metabolic responses in the gills of tongue sole (Cynoglossus semilaevis) exposed to salinity stress using NMR-based metabolomics // Sci. Total Environ. 2019. Vol. 653. P. 465-474. DOI:https://doi.org/10.1016/j.scitotenv.2018.10.404.
40. Kalujnaia S., Gellatly S.A., Hazon N., Villasenor A., Yancey P.H., Cramb G. Seawater acclimation and inositol monophosphatase isoform expression in the European eel (Anguilla anguilla) and Nile tilapia (Orechromis niloticus) // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013. Vol. 305. P. R369-R384. DOI:https://doi.org/10.1152/ajpregu.00044.2013.
41. Kelly S.P., Woo N.Y.S. The response of sea bream following abrupt hyposmotic exposure // J. Fish Biol. 1999. Vol. 55. P. 732-750. DOI:https://doi.org/10.1111/j.1095-8649.1999.tb00714.x.
42. Kim C., Kültz D. An osmolality/salinity-responsive enhancer 1 (OSRE1) in intron 1 promotes salinity induction of tilapia glutamine synthetase // Sci. Rep. 2020. Vol. 10. 12103. DOI:https://doi.org/10.1038/s41598-020-69090-z.
43. King P.A., Cha C.-J., Goldstein L. Amino acid metabolism and cell volume regulation in the little skate, Raja erinacea // J. Exp. Zool. 1980. Vol. 212. P. 69-77. DOI:https://doi.org/10.1002/jez.1402120110.
44. Kültz D., Li J., Paguio D., Pham T., Eidsaa M., Almaas E. Population-specific renal proteomes of marine and freshwater three-spined sticklebacks // J. Proteomics. 2016. Vol. 135. P. 112-131. DOI:https://doi.org/10.1016/j.jprot.2015.10.002.
45. Laiz-Carrion R., Martín del Río M.P., Miguez J.M., Mancera J.M., Soengas J.L. Influence of cortisol on osmoregulation and energy metabolism in gilthead seabream Sparus aurata // J. Exp. Zool. 2003. Vol. 298A. P. 105-118. DOI:https://doi.org/10.1002/jez.a.10256
46. Lamas I., Anadón R., Díaz-Regueira S. Carnosine-like immunoreactivity in neurons of the brain of an advanced teleost, the gray mullet (Chelon labrosus, Risso) // Brain Res. 2007. Vol. 1149. P. 87-100. DOI:https://doi.org/10.1016/j.brainres.2007.02.070.
47. Lasserre P., Gilles R. Modification of the amino acid pool in the parietal muscle of two euryhaline teleosts during osmotic adjustment // Experientia. 1971. Vol. 27. № 12. P. 1434-1435. DOI:https://doi.org/10.1007/BF02154273.
48. Moyes C.D., Moon T.W., Ballantyne J.S. Osmotic effects on amino acid oxidation in skate liver mitochondria // J. exp. Biol. 1986. Vol. 125. P. 181-195. DOI:https://doi.org/10.1242/jeb.125.1.181.
49. Nitzan T., Rozenberg P., Cnaani A. Differential expression of amino-acid transporters along the intestine of Mozambique tilapia (Oreochromis mossambicus) and the effect of water salinity and time after feeding // Aquaculture. 2017. Vol. 472. P. 71-75. DOI:https://doi.org/10.1016/j.aquaculture.2016.01.020.
50. Polakof S., Arjona F.J., Sangiao-Alvarellos S., Martín del Río M.P., Mancera J.M., Soengas J.L. Food deprivation alters osmoregulatory and metabolic responses to salinity acclimation in gilthead sea bream Sparus auratus // J. Comp. Physiol. B. 2006. Vol. 176. P. 441-452. DOI:https://doi.org/10.1007/s00360-006-0065-z.
51. Qin H., Yu Z., Zhu Z., Lin Y., Xia J., Jia Y. The integrated analyses of metabolomics and transcriptomics in gill of GIFT tilapia in response to long term salinity challenge // Aquacult. Fish. 2022. Vol. 7. P. 131-139. DOI:https://doi.org/10.1016/j.aaf.2021.02.006.
52. Sadok S., M'Hetli M., El Abed A., Uglow R.F. Changes in some nitrogenous compounds in the blood and tissues of freshwater pikeperch (Sander lucioperca) during salinity acclimation // Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 2004. Vol. 138. № 1. P. 9-15. DOI:https://doi.org/10.1016/j.cbpb.2004.02.002.
53. Schmitz M., Ziv T., Admon A., Baekelandt S., Mandiki S. N.M., L'Hoir M., Kestemont P. Salinity stress, enhancing basal and induced immune responses in striped catfish Pangasianodon hypophthalmus (Sauvage) // J. Proteomics. 2017. Vol. 167. P. 12-24. DOI:https://doi.org/10.1016/j.jprot.2017.08.005.
54. Senut M., Azher S., Margolis F.L., Patel K., Mousa A., Majid A. Distribution of carnosine-like peptides in the nervous system of developing and adult zebrafish (Danio rerio) and embryonic effects of chronic carnosine exposure // Cell Tissue Res. 2009. Vol. 337. № 1. P. 45-61. DOI:https://doi.org/10.1007/s00441-009-0796-8.
55. Speers-Roesch B., Ip Y.K., Ballantyne J.S. Metabolic organization of freshwater, euryhaline, and marine elasmobranchs: implications for the evolution of energy metabolism in sharks and rays // J. Exp. Biol. 2006. Vol. 209. P. 2495-2508. DOI:https://doi.org/10.1242/jeb.02294.
56. Su H., Ma D., Fan J., Zhong Z., Li Y., Zhu H. Metabolism response mechanism in the gill of Oreochromis mossambicus under salinity, alkalinity and saline-alkalinity stresses // Ecotoxicology and Environmental Safety. 2023. Vol. 251. 114523. DOI:https://doi.org/10.1016/j.ecoenv.2023.114523.
57. Takeuchi K., Toyohara H. Taurine transporter: hyperosmotic stressresponsive gene // Aquatic Genomics. 2003. P. 207-216. DOI:https://doi.org/10.1007/978-4-431-65938-9_18.
58. Takeuchi K., Toyohara H., Kinoshita M., Sakaguchi M. Ubiquitous increase in taurine transporter mRNA in tissues of tilapia (Oreochromis mossambicus) during high-salinity adaptation // Fish Physiol. Biochem. 2001. Vol. 23. P. 173-182. DOI:https://doi.org/10.1023/A:1007889725718.
59. Takeuchi K., Toyohara H., Sakaguchi M. A hyperosmotic stress-induced mRNA of carp cell encodes Na+ and Cl--dependent high affinity taurine transporter // Biochim. Biophys. Acta. 2000. Vol. 1464. P. 219-230. DOI:https://doi.org/10.1016/s0005-2736(00)00158-9.
60. Tam W.L., Wong W.P., Loong A.M., Hiong K.C., Chew S.F., Ballantyne J.S., Ip Y.K. The osmotic response of the Asian freshwater stingray (Himantura signifer) to increased salinity: a comparison with marine (Taeniura lymma) and Amazonian freshwater (Potamotrygon motoro) stingrays // J. Exp. Biol. 2003. Vol. 206. P. 2931-2940. DOI:https://doi.org/10.1242/jeb.00510.
61. Tian Y., Gao Q., Yu H., Liu D., Dong S., Zhou Y., Yang W., Xue N., Bao H., Yu Y. Dynamic transcriptome and LC-MS/MS analysis revealed the important roles of taurine and glutamine metabolism in response to environmental salinity changes in gills of rainbow trout (Oncorhynchus mykiss) // Int. J. Biol. Macromol. 2022. Vol. 221. P. 1545-1557. DOI:https://doi.org/10.1016/j.ijbiomac.2022.09.124.
62. Tok C.Y., Chew S.F., Ip Y.K. Gene cloning and mRNA expression of glutamate dehydrogenase in the liver, brain, and intestine of the swamp eel, Monopterus albus (Zuiew), exposed to freshwater, terrestrial conditions, environmental ammonia, or salinity stress // Front. Physiol. 2011. Vol. 2. 100. DOI:https://doi.org/10.3389/fphys.2011.00100.
63. Tok C.Y., Chew S.F., Peh W.Y.X., Loong A.M., Wong W.P., Ip Y.K. Glutamine accumulation and up-regulation of glutamine synthetase activity in the swamp eel, Monopterus albus (Zuiew), exposed to brackish water // J. Exp. Biol. 2009. Vol. 212. P. 1248-1258. DOI:https://doi.org/10.1242/jeb.025395.
64. Treberg J.R., Speers-Roesch B., Piermarini P.M., Ip Y.K., Ballantyne J.S., Driedzic W.R. The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species // J. Exp. Biol. 2006. Vol. 209. P. 860-870. DOI:https://doi.org/10.1242/jeb.02055.
65. Venkatachari S.A.T. Effect of salinity adaptation on nitrogen metabolism in the freshwater fish Tilapia mossambica. I. Tissue protein and amino acid levels // Marine Biol. 1974. Vol. 24. № 1. P. 57-63. DOI:https://doi.org/10.1007/BF00402847.
66. Vij S., Purushothaman K., Sridatta P.S.R., Jerry D.R. Transcriptomic analysis of gill and kidney from asian seabass (Lates calcarifer) acclimated to different salinities reveals pathways involved with euryhalinity // Genes. 2020. Vol. 11. № 7. 733. DOI:https://doi.org/10.3390/genes11070733.
67. Vislie T., Fugelli K. Cell volume regulation in flounder (Platichthys flesus) heart muscle accompanying an alteration in plasma osmolality // Comp. Biochem. Physiol. A. 1975. Vol. 52. № 3. P. 415-418. DOI:https://doi.org/10.1016/S0300-9629(75)80057-0.
68. Wu H., Liu J., Lu Z., Xu L., Ji C., Wang Q., Zhao J. Metabolite and gene expression responses in juvenile flounder Paralichthys olivaceus exposed to reduced salinities // Fish Shellfish Immunol. 2017. Vol. 63. P. 417-423. DOI:https://doi.org/10.1016/j.fsi.2017.02.042.
69. Yancey P.H. Nitrogen compounds as osmolytes // Fish Physiol. 2001. Vol. 20. P. 309-341. DOI:https://doi.org/10.1016/S1546-5098(01)20010-7.
70. Yancey P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses // J. Exp. Biol. 2005. Vol. 208. P. 2819-2830. DOI:https://doi.org/10.1242/jeb.01730.
71. Yancey P.H. Organic osmolytes in elasmobranchs // Physiology of Elasmobranch Fishes: Internal Processes. 2015. Vol. 34B. P. 221-277. DOI:https://doi.org/10.1016/B978-0-12-801286-4.00004-6.
72. Yancey P.H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems // Science. 1982. Vol. 217. 4566. P. 1214-1222. DOI:https://doi.org/10.1126/science.7112124.
73. Yancey P.H., Siebenaller J.F. Co-evolution of proteins and solutions: Protein adaptation versus cytoprotective micromolecules and their roles in marine organisms // J. Exp. Biol. 2015. Vol. 218. № 12. P. 1880-1896. DOI:https://doi.org/10.1242/jeb.114355.
74. Yancey P.H., Somero G.N. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes // Biochem. J. 1979. Vol. 183. P. 317-323. DOI:https://doi.org/10.1042/bj1830317.
75. Ziyadeh F.N., Feldman G.M., Booz G.W. Kleinzeller A. Taurine and cell volume maintenance in the shark rectal gland: cellular fluxes and kinetics // Biochim. Biophys. Acta. 1988. Vol. 943. P. 43-52. DOI:https://doi.org/10.1016/0005-2736(88)90345-8.