Аннотация и ключевые слова
Аннотация (русский):
Обзор посвящен анализу информации о водных грибах как потенциальных агентах биоремедиации водных сред при химическом загрязнении. Рассмотрены подходы к классификации групп водной микобиоты на основании продолжительности существования в водных средах и морфофизиологических особенностях видов. Изложены известные механизмы взаимодействия грибов и поллютантов, результатом которых является биодеградация или биосорбция поллютантов, а, в конечном счете, снижение концентрации химических веществ, доступных для других обитателей водных сред. Рассмотрены конкретные примеры, иллюстрирующие существенную роль грибных ферментов в этих процессах. Приводятся данные об использовании в целях микоремедиации грибных штаммов, выделенных из морских и пресных вод, охарактеризована эффективность грибов разного происхождения в биоремедиации. Сделан вывод о том, что более перспективным направлением микоремедиации представляется ориентация на выбор видов грибов-биодеструкторов, обладающих специфическим ферментами, способными приводить к деградации загрязняющих веществ.

Ключевые слова:
гидромикобиота, микоремедиация, биодеградация, биосорбция, морские грибы, пресноводные грибы, загрязнение, эффективность очистки вод
Текст
Текст произведения (PDF): Читать Скачать
Список литературы

1. Аронбаев С.Д. Биосорбционное концентрирование тяжелых металлов и радионуклидов микроорганизмами и сорбенты на их основе: обзор // Молодой ученый. 2015. № 24. С. 31-50 [Интернет-ресурс] https://moluch.ru/archive/104/24228/ (дата обращения: 30.05.2018).

2. Васнев В.А. Биоразлагаемые полимеры // Высокомолекулярные соединения. Серия Б. 1997. Т. 39. № 12. С. 2073-2086.

3. Громов Б.В., Мамкаева М.А., Мамкаева К.А. Хитридиевые грибы - паразиты желто-зеленой водоросли Tribonema gayanum // Современная микология в России. Тез. докл. I Съезда микологов России, 11-13 апреля 2002 г. М.: Изд-во “Национальная академия микологии”. 2002. С. 181-182.

4. Домрачева Л.И., Ашихмина Т.Я., Елкина Т.С., Гайфутдинова А.Р. Микробная деградация промышленных отходов (обзор) // Теоретическая и прикладная экология. 2014. № 2. С. 6-16. DOI:https://doi.org/10.25750/1995-4301-2014-2-006-016.

5. Дудка И.А. Водные несовершенные грибы СССР. Киев: Наук. думка, 1985. 188 с.

6. Логина Н.В. Урбанизация // Глобалистика: Энциклопедия. М.: Радуга, 2003. С. 1046-1048.

7. Обзор состояния и загрязнения окружающей среды в Российской Федерации. Ежегодное издание. 1994-2017.

8. Позднякова И.Н., Никитинина В.Е., Турковская О.В. Биоремедиация нефтезагрязненной почвы комплексом гриб Pleurotus ostreatus - почвенная микрофлора // Прикладная биохимия и микробиология. 2008. Т. 44. № 1. С. 69-75.

9. Рейвн П., Эверт З., Айхорн С. Современная ботаника. Т. 1. М.: Мир, 1990. 185 с.

10. Скугорева C.Г., Горностаева Е.А., Бурков А.А., Кутявина Т.И., Южанин К.И., Домрачева Л.И., Ашихмина Т.Я. Возможность утилизации отходов пластмасс с использованием микромицетов Fusarium solani и Trichoderma lignorum // Теоретическая и прикладная экология. 2021. № 4. С. 193-202. DOI:https://doi.org/10.25750/1995-4301-2021-4-193-202

11. Скугорева С.Г., Кантор Г.Я., Домрачева Л.И. Биосорбция тяжелых металлов микромицетами: особенности процесса, механизмы, кинетика. Теоретическая и прикладная экология. 2019. № 2. С. 14-31. DOI:https://doi.org/10.25750/1995-4301-2019-2-014-031

12. Солнцева И.О., Виноградова Г.И. Сезонные исследования дрожжевой флоры воды и рыб в Рыбинском водохранилище // Биология внутренних вод: Информ. Бюл. 1990. № 85. С. 17-22.

13. Терехова В.А. Микромицеты в экологической оценке водных и наземных экосистем. М.: Наука, 2007. 215 с.

14. Черногаева Г.М., Ждановская Е.А. Загрязнение поверхностных пресных вод на урбанизированных территориях субъектов Российской Федерации // Вопросы географии. 2018. № 145. С. 414-423.

15. Abbas S.H., Ismail I.M., Mostafa T.M., Sulaymon A.H. Biosorption of heavy metals: a review // Journal of Chemical Science and Technology. 2014. Vol. 3. № 4. P. 74-102.

16. AbuQamar S.F., Abd El-Fattah H.I., Nader M.M., Zaghloul R.A., Abd El-Mageed T. A., Selim S., Omar B. A., Mosa W.F., Saad A. M., El-Tarabily K.A., El-Saadony M. T. Exploiting fungi in bioremediation for cleaning-up emerging pollutants in aquatic ecosystems // Marine Environmental Research. 2023. Vol. 190. № 106068. DOI:https://doi.org/10.1016/j.marenvres.2023.106068.

17. Ahumada-Rudolph R., Novoa V., Becerra J., Cespedes C., Cabrera-Pardo J.R. Mycoremediation of oxytetracycline by marine fungi mycelium isolated from salmon farming areas in the south of Chile // Food and Chemical Toxicology. 2021. Vol. 152. № 112198. DOI:https://doi.org/10.1016/j.fct.2021.112198.

18. Akhtara N., Mannana M.A. Mycoremediation: Expunging environmental pollutants // Biotechnology Reports. 2020. № 00452. DOI:https://doi.org/10.1016/j.btre.2020.e00452.

19. Alluri H.K., Srinivasa R.S.R., Settalluri V.S., Singh J., Suryanarayana V., Venkateshwar P. Biosorption: An eco-friendly alternative for heavy metal removal // Afr. J. Biotechnol. 2007. Vol. 6. № 25. P. 2924-2931. DOI:https://doi.org/10.5897/AJB2007.000-2461.

20. Alvarenga N., Birolli W. G., Seleghim M.H.R., Porto André L.M. Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense // Chemosphere. 2014. Vol. 117. P. 47-52. DOI:https://doi.org/10.1016/j.chemosphere.2014.05.069.

21. Aragão M.S., Menezes D.B., Ramos L.C., Oliveira H.S., Bharagava R.N., Romanholo L.F. Ferreira, Teixeira J.A., Ruzene D.S., Silva D.P. Mycoremediation ofvinasse by surface response methodology and preliminary studies in air-lift bioreactors // Chemosphere. 2020. Vol. 244. № 125432. DOI:https://doi.org/10.1016/j.chemosphere.2019.125432.

22. Arwidsson Z., Johansson E., von Kronhelm T., Allard B., van Hees P. Remediation of metal contaminated soil by organic metabolites from fungi. I. Production of organic acids // Water, Air, and Soil Pollut. 2010. Vol. 205. № 1-4. P. 58-67. DOI:https://doi.org/10.1007/s11270-009-0067-z

23. Awofolu O.R., Okonkwo J.O., Merwe R.R.D., Badenhorst J., Jordaan E. A new approach to chemical modification of Aspergillus niger and sorption of lead ion by fungal species // Electronic J. Biotechnol. 2006. Vol. 9. № 4. P. 340-348. DOI:https://doi.org/10.2225/vol9-issue4-fulltext-1.

24. Bankole P.O., Omoni V. T., Mulla S.I., Adebajo S.O., Adekunle A.A. Co-biomass degradation of fluoranthene by marine-derived fungi; Aspergillus aculeatus and Mucor irregularis: Comprehensive process optimization, enzyme induction and metabolic analyses // Arabian Journal of Chemistry. 2022. Vol. 15. № 104036. DOI:https://doi.org/10.1016/j.arabjc.2022.104036.

25. Bao S., Mu J., Yin P., Chen H., Zhou S. Exploration of anti-chromium mechanism of marine Penicillium janthinellum P1 through combinatorial transcriptomic analysis and WGCNA // Ecotoxicology and Environmental Safety. 2022. Vol. 233. № 113326. DOI:https://doi.org/10.1016/j.ecoenv.2022.113326.

26. Barh A., Kumari B., Sharma S., Annepu S. K., Kumar A., Kamal S., Sharma V. P. Mushroom mycoremediation: kinetics and mechanism // Smart Bioremediation Technologies. 2019. P. 1-22. DOI:https://doi.org/10.1016/b978-0-12-818307-6.00001-9.

27. Boonyeun N., Sivichai S., Hywel-Jones N.L. The diversity of Ingoldian fungi in Thailand / The 7th International Mycological Congress. Oslo, 11-17 August 2002. Abstracts. P. 146.

28. Caesar-Tonthat T.C., Kloeke F.V., Geesey G.G., Henson J.M. Melanin production by a filamentous soil fungus in response to copper and localization of copper sulfide by sulfide-silver staining // Appl. Environ. Microbiol. 1995. Vol. 61. P. 1968-1975. PMCID: PMC1388449.

29. Cajthaml T. Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation // Environ Microbiol. 2014. DOI:https://doi.org/10.1111/1462-2920.12460

30. Carstens L., Cowan A.R., Seiwert B., Schlosser D. Biotransformation of phthalate plasticizers and Bisphenol A by marine-derived, freshwater, and terrestrial fungi // Front. Microbiol. 2020. Vol. 11. № 317. DOI:https://doi.org/10.3389/fmicb.2020.00317.

31. Chen H., Guan Y., Yao S. A novel two-species whole-cell immobilization system composed of marine-derived fungi and its application in wastewater treatment // J. Chem. Technol. Biotechnol. 2013. Vol. 89. № 11. P. 1733-1740. DOI:https://doi.org/10.1002/jctb.4253.

32. Chen H., Lu Y., Yin P., Li X., Shan Y. Exploring the mechanisms of biosorption of Cr (VI) by marine-derived Penicillium janthinellum P1 // Int. J. Agric. Biol. 2019. Vol. 22. № 5. P. 913-920.

33. D’Souza D.T., Tiwari R., Sah A.K., Raghukumar C. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes // Enzyme Microb. Tech. 2006. Vol. 38. P. 504-511. DOI:https://doi.org/10.1016/j.enzmictec.2005.07.005.

34. Dash H.R., Mangwani N., Chakraborty J., Kumari S., Das S. Marine bacteria: potential candidates for enhanced bioremediation // Appl. Microbiol. Biotechnol. 2013. Vol. 97. № 2. P. 561-571. DOI:https://doi.org/10.1007/s00253-012-4584-0.

35. Djelal H., Amrane A. Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale // J. Environ. Sci. (China). 2013. Vol. 25. № 9. P. 1906-1912. DOI:https://doi.org/10.1016/s1001-0742(12)60239-3.

36. Esterhuizen-Londt M., Schwartz K., Pflugmacher S. Using aquatic fungi for pharmaceutical bioremediation: Uptake of acetaminophen by Mucor hiemalis does not result in an enzymatic oxidative stress response // Fungal biology. 2016. Vol. 120. № 10. P. 1249-1257. DOI:https://doi.org/10.1016/j.funbio.2016.07.009.

37. Frid C., Caswell B.A. Marine Pollution. Caswell Oxford: Oxford University Press, 2017. 268 p.

38. Gadd G.M. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment // J. Chem. Technol. Biotechnol. 2009. Vol. 84. P. 13-28. DOI:https://doi.org/10.1002/jctb.1999.

39. Gadd G.M., De Rome L. Biosorption of copper by fungal melanins // Appl. Microbiol. Biotechnol. 1988. Vol. 29. P. 610-617. DOI:https://doi.org/10.1007/2FBF00260993.

40. Gadd G.M., Griffiths A.J. Microorganisms and heavy metal toxicity // Microbial Ecology. 1978. Vol. 4. P. 303-317. DOI:https://doi.org/10.1007/BF02013274.

41. Garcha S., Brar S.K., Sharma K. Performance of a laboratory prepared microbial consortium for degradation of dairy waste water in a batch system // Journal of Scientific & Industrial Research. 2014. Vol. 73. No. 5. P. 346-350.

42. Giubilei M.A., Leonardi V., Federici E., Covino S., Šašek V., Novotny C., Federici F., D’Annibale A., Petruccioli M. Effect of mobilizing agents on mycoremediation and impact on the indigenous microbiota // Journal of Chemical Technology and Biotechnology. 2009. Vol. 84. № 6. P. 836-844. DOI:https://doi.org/10.1002/jctb.2126.

43. Gupta R., Mohapatra H. Microbial biomass: an economical alternative for removal of heavy metals from waste water // Indian J. Exp. Biol. 2003. Vol. 41. № 9. P. 945-966.

44. Heeger F., Bourne E.C., Wurzbacher C., Funke E., Lipzen A., He G., Ng V., Grigoriev I.V., Schlosser D., Monaghan M.T. Evidence for lignocellulose-decomposing enzymes in the genome and transcriptome of the aquatic hyphomycete Clavariopsis aquatica // J. Fungi. 2021. Vol. 7. № 854. DOI:https://doi.org/10.3390/jof7100854.

45. Hofmann U., Schlosser D. Biochemical and physicochemical processes contributing to the removal of endocrine-disrupting chemicals and pharmaceuticals by the aquatic ascomycete Phoma sp. UHH 5-1-03 // Appl. Microbiol. Biotechnol. 2016. Vol. 100. P. 2381-2399. DOI:https://doi.org/10.1007/s00253-015-7113-0.

46. Ingold C.T. Aquatic Hyphomycetes from Canada // Can. J. Bot. 1960. Vol. 38. № 5. P. 803-809.

47. Ingold C.T. Aquatic Hyphomycetes from Switzerland // Trans. Brit. Mycol. Soc. 1949. Vol. 32, pt. 3 (4). P. 341-345.

48. Ingold C.T. Aquatic Hyphomycetes of decaying alder leaves // Trans. Brit. Mycol. Soc. 1942. Vol. 25, pt. 3 (4). P. 104-115.

49. Ingold C.T. Aquatic Hyphomycetes spores from West Scotland // Trans. Brit. Mycol. Soc. 1973. Vol. 61, pt. 2. P. 251-255.

50. Ingold C.T. Conidia in the foam of two English streams // Trans. Brit. Mycol. Soc. 1975. Vol. 65, pt. 3. P. 522-527.

51. Jones K.R., Klein C.J., Halpern B.S., Venter O., Grantham H., Kuempel C.D., Shumway N., Friedlander A.M., Possingham H.P., Watson J.E.M. The location and protection status of earth’s diminishing marine wilderness // Current Biology. 2018. Vol. 28. P. 2506-2512. DOI:https://doi.org/10.1016/j.cub.2018.06.010.

52. Junghanns C., Krauss G., Schlosser D. Potential of aquatic fungi derived from diverse freshwater environments to decolourise synthetic azo and anthraquinone dyes // Bioresource Technol. 2008а. Vol. 99. P. 1225-1235. DOI:https://doi.org/10.1016/j.biortech.2007.02.015.

53. Junghanns C., Parra R., Keshavarz T., Schlosser D. Towards higher laccase activities produced by aquatic ascomycetous fungi through combination of elicitors and an alternative substrate // Eng. Life Sci. 2008b. Vol. 8. № 3. P. 277-285. DOI:https://doi.org/10.1002/elsc.200800042.

54. Klonowska A., Le Petit J., Tron T. Enhancement of minor laccases production in the basidiomycete Marasmius quercophilus C30 // FEMS Microbiol. Lett. 2001. Vol. 200. P. 25-30. DOI:https://doi.org/10.1111/j.1574-6968.2001.tb10687.x.

55. Krishna K.R., Philip L. Biodegradation of lindane, methyl parathion and carbofuran by various enriched bacterial isolates // J. Environ. Sci. Health B. 2008. Vol. 43. P. 157-171. DOI:https://doi.org/10.1080/03601230701795155.

56. Kuenh K.A., Koehn R.D. A mycofloral survey of an artesian community within the Edwards Aquifer of central Texas // Mycologia. 1988. Vol. 80. № 5. P. 646-652.

57. Kumari S., Regar R.K., Manickam N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria // Bioresour. Technol. 2018. Vol. 254. P. 174-179. DOI:https://doi.org/10.1016/j.biortech.2018.01.075.

58. Laad M., Ghule B. Removal of toxic contaminants from drinking water using biosensors: A systematic review // Groundwater for Sustainable Development. 2023. Vol. 20. № 10088. DOI:https://doi.org/10.1016/j.gsd.2022.100888.

59. Li J.L., Chen B.H. Effect of non-ionic surfactants on biodegradation of phenanthrene by a marine-bacteria of Neptunomonas naphthovorans // J. Hazard. Mat. 2009. Vol. 162. P. 66-73. DOI:https://doi.org/10.1016/j.jhazmat.2008.05.019.

60. Luning Prak D.J., Pritchard P.H. Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar non-ionic surfactant solution // Water Res. 2002. Vol. 36. P. 3463-3472. DOI:https://doi.org/10.1016/s0043-1354(02)00070-2.

61. Martin C., Moeder M., Daniel X., Krauss G., & Schlosser D. Biotransformation of the polycyclic musks HHCB and AHTN and metabolite formation by fungi occurring in freshwater environments // Environmental Science & Technology. 2007. Vol. 41. № 15. P. 5395-5402. DOI:https://doi.org/10.1021/es0711462.

62. Nunes B., Antunes S.C., Santos J., Martins L., Castro B.B. Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators? // Ecotoxicology and Environmental Safety. 2014. Vol. 107. P. 178-185. DOI:https://doi.org/10.1016/j.ecoenv.2014.05.027.

63. Nyanhongo G.S., G˝ubitz G., Sukyai P., Leinter C., Haltrich D., Ludwig R. Oxidoreductases from Trametes spp. in biotechnology: A wealth of catalytic activity // Food Technology and Biotechnology. 2007. Vol. 45. № 3. P. 250-268.

64. Okere U., Semple K. Biodegradation of PAHs in ‘pristine’ soils from different climatic regions // J. Bioremed. Biodegrad. S. 2012. Vol. 1. № 2. DOI:https://doi.org/10.4172/2155-6199.S1-006.

65. Ortega S.N., Nitschke M., Mouad A.M., Landgraf M.D., Rezende M.O.O., Seleghim M.H.R., Sette L.D., Porto A.L.M. Isolation of Brazilian marine fungi capable of growing on DDD pesticide // Biodegradation. 2011. Vol. 22. P. 43-50. DOI:https://doi.org/10.1007/s10532-010-9374-8.

66. Pophali G.R., Kaul S.N., Mathur S. Influence of hydraulic shock loads and TDS on the performance of large-scale CETPs treating textile effluents in India // Water Res. 2003. Vol. 37. P. 353-361. DOI:https://doi.org/10.1016/s0043-1354(02)00268-3.

67. Rathore D., Dubey R., Dwivedi A. Advances in mycoremediation of emerging potential toxic effluents. In: Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology. 2021. P. 301-329. DOI:https://doi.org/10.1016/b978-0-12-821925-6.00014-9.

68. Revάy A., Gönczöl J. Longitudinal distribution and colonization patterns of wood inhabiting fungi in a mountain stream in Hungary // Nova Hedvigia, 1990. Vol. 51. № 3-4. P. 505-520.

69. Rocha L.C., Ferreira H.V., Pimenta E.F., Souza Berlinck R.G., Oliveira Rezende M.O., Landgraf M.D., Regali Seleghim M.H., Durães Sette L., Meleiro Porto A.L. Biotransformation of α-bromoacetophenones by the marine fungus Aspergillus sydowii // Mar. Biotechnol. 2010. Vol. 12. P. 552-557. DOI:https://doi.org/10.1007/s10126-009-9241-y.

70. Rocha L.C., Ferreira H.V., Pimenta E.F., Berlinck R.G.S., Seleghim M.H.R., Javaroti D.C.D., Sette L.D., Bonugli R.C., Porto A.L.M. Bioreduction of α-chloroacetophenone by whole cells of marine fungi // Biotechnol Lett. 2009. Vol. 31. № 10. P. 1559-1563. DOI:https://doi.org/10.1007/s10529-009-0037-y.

71. Rocha L.C., Oliveira J.R., Vacondio B., Rodrigues G.N., Seleghim M.H., Porto A.L.M. Bioactive marine microorganisms for biocatalytic reactions in organic compounds. In: Marine Microbiology: Bioactive Compounds and Biotechnological Applications, first ed. Wiley-VCH, Weinheim. 2013. P. 453-490.

72. Sarkar S., Pramanik A., Mitra A., Mukherjee J. Bioprocessing data for the production of marine enzymes // Mar. Drugs. 2010. Vol. 8. P. 1323-1372. DOI:https://doi.org/10.3390/md8041323.

73. Senthil Kumar P., Prasannamedha G. Biological and chemical impacts on marine biology. In: Modern Treatment Strategies for Marine Pollution. 2021. P. 11-27. DOI:https://doi.org/10.1016/B978-0-12-822279-9.00006-3.

74. Shimazu M., Mulchandani A., Chen W. Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase // Biotechnol. Bioeng. 2001. Vol. 76. P. 318-324. DOI:https://doi.org/10.1002/bit.10095.

75. Singh H. Mycoremediation: fungal bioremediation. John Wiley and Sons, Inc., New Jersey. 2006.

76. Singh S., Rawat M., Malyan S. K., Singh R., Kumar Tyagi V., Singh K., Kashyap S., Kumar S., Sharma M., Panday B.K., Pandey R.P. Global distribution of pesticides in freshwater resources and their remediation approaches // Environmental Research. 2023. DOI:https://doi.org/10.1016/j.envres.2023.115605.

77. Sogorb M.A., Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis // Toxicol. Lett. 2002. Vol. 128. P. 215-228. DOI:https://doi.org/10.1016/s0378-4274(01)00543-4.

78. Solé M., Müller I., Pecyna M. J., Fetzer I., Harms H., Schlosser D. Differential regulation by organic compounds and heavy metals of multiple laccase genes in the aquatic hyphomycete Clavariopsis aquatic // Applied and Environmental Microbiology. 2012. Vol. 78. № 13. P. 4732-4739. DOI:https://doi.org/10.1128/aem.00635-1.

79. Tan T.K., Lim G. Effects of water pollution on fungi of submerged organic debris // Mycopathol. 1983. Vol. 82. № 2. P. 121-124.

80. Tan Т.К., Yeoh H.H., Tan M.L., Koh S.K. Cellulase production by filamentous fungi // 5th Int. Symp. Microb. Ecol. (ISME 5), Kyoto, Aug. 27 - Sept. 1, 1989: Abstr. S. I., 1990. P. 132.

81. Trincone A. Potential biocatalysts originating from sea environments // J. Mol. Catal. B. 2010. Vol. 66. P. 241-256. DOI:https://doi.org/10.1016/j.molcatb.2010.06.004.

82. Vasconcelos M.R.S., Vieira G.A.L., Otero I.V.R., Bonugli-Santos R.C., Rodrigues M.V.N., Rehder V.L.G., Ferro M., Boaventura S., Bacci Jr. М., Sette L.D. Pyrene degradation by marine-derived ascomycete: process optimization, toxicity, and metabolic analyses // Environmental Science and Pollution Research. 2019. Vol. 26. № 12. P. 12412-12424. DOI:https://doi.org/10.1007/s11356-019-04518-2.

83. Wang M.X., Zhang Q.L., Yao S.J. A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater // Chem. Eng. J. 2015. Vol. 259. P. 837-844. DOI:https://doi.org/10.1016/j.cej.2014.08.003

84. Wesenberg D., Kyriakides I., Agathos S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents // Biotechnol. Adv. 2003.Vol. 22. P. 161-187. DOI:https://doi.org/10.1016/j.biotechadv.2003.08.011.

85. Yang P., Shi W., Wang H., Liu H. Screening of freshwater fungi for decolorizing multiple synthetic dyes // Brazilian Journal of Microbiology. 2016. Vol. 47, № 4. P. 828-834. DOI:https://doi.org/10.1016/j.bjm.2016.06.010.

86. Zare-Maivan H., Shearer C.A. Extracellular enzyme production and cell wall degradation by freshwater lignicolous fungi // Mycologia. 1988. Vol. 80, № 3. P. 365-375.

87. Zeghal E., Vaksmaa A., Vielfaure H. et al. The potential role of marine fungi in plastic degradation - a review // Front. Mar. Sci. 2021. Vol. 8. № 738877. DOI:https://doi.org/10.3389/fmars.2021.738877.

88. Zulkifli S.N., Rahim H.A., Lau W-J. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications // Sensors and Actuators B: Chemical. 2018. Vol. 255. Part 3. P. 2657-2689. DOI:https://doi.org/10.1016/j.snb.2017.09.078.

Войти или Создать
* Забыли пароль?