Russian Federation
UDK 574.64 Водная токсикология
The study investigates the relationship between the mercury (Hg) content in the muscles of the perch Perca fluviatilis L., 1758 from different areas of the Rybinsk Reservoir including tail-water of the Uglich hydroelectric power plant, which differ in their physico-chemical characteristics, and the length of the fish. The measurement of Hg was carried out using the atomic absorption method on a RA-915+ mercury analyzer with the PYRO prefix (Lumex), without any preliminary sample preparation. The detection limits for Hg concentrations in biological samples on this device range from 0.0005 to 2.0000 mg/kg. Average metal concentrations ranged from 0.04 to 0.87 mg/kg of wet weight for fish with an average length of 2.2–45.0 cm, and differed by reservoir sections. The magnitude of effect of the fish length on the metal content in fish muscles was determined by the slope of the regression line, which indicates the rate of Hg accumulation, and the intercept of the line on the Y-axis representing the baseline level of Hg in organisms at the beginning of the food chain for each specified group. It was found that the maximum intensity of Hg accumulation is attained in the perch of up to 10 cm long and then significantly decreased in larger fishes, variably depending on the sampling area within the Rybinsk Reservoir.
mercury, Perca fluviatilis, Rybinsk Reservoir
1. Gremyachih V.A., Lozhkina R.A., Komov V.T. Prostranstvenno-vremennaya variabel'nost' soderzhaniya rtuti v rechnom okune Perca fluviatilis Linnaeus, 1758 (Perciformes, Percidae) Rybinskogo vodohranilischa na rubezhe XX–XXI vekov // Transformaciya ekosistem. 2019. T. 2, № 2(4). S. 85–95.
2. Gremyachih V.A., Lozhkina R.A., Kotikov D.E., Komov V.T. Koncentracii rtuti v myshcah raznyh vidov ryb iz vodoemov Yaroslavskoy oblasti i prilegayuschih territoriy // Trudy Instituta biologii vnutrennih vod im. I.D. Papanina RAN. 2022. Vyp. 100(103). S. 35–56. DOI:https://doi.org/10.47021/0320-3557-2022-34-56.
3. Zhakov L.A. Formirovanie i struktura rybnogo naseleniya ozer severo-zapada SSSR. Moskva: Nauka, 1984. 144 s.
4. Zhitlo Ya.I. Issledovaniya po pitaniyu molodi okunya Valdayskogo ozera // Izvestiya VNIORH. 1939. T. XXII. S. 55–71.
5. Komov V.T., Gremyachih V.A., Kamshilova T.B., Lobus N.V. Soderzhanie rtuti v myshcah okunya iz Polistovo-Lovatskogo verhovogo bolotnogo massiva // Trudy Gosudarstvennogo prirodnogo zapovednika Rdeyskiy. 2009. № 1. S. 102–115.
6. Leonova G.A., Kalmychkov G.V., Geletiy V.F., Andrulaytis L.D. Soderzhanie i harakter raspredeleniya rtuti v abiticheskih i bioticheskih komponentah ekosistemy Bratskogo vodohranilischa // Biologiya vnutrennih vod. 2006. № 2. S. 97–104.
7. Rybinskoe vodohranilische i ego zhizn'. L.: Nauka. 1972. 364 s.
8. Struktura i funkcionirovanie ekosistemy Rybinskogo vodohranilischa v nachale XXI veka / red. V.I. Lazareva. M.: RAN, 2018. 456 s.
9. Backstrom C.H., Buckman K., Molden E., Chen C.Y. Mercury levels in freshwater fish: Estimating concentration with fish length to determine exposures through fish consumption // Arch. Environ. Contam. Toxicol. 2020. Vol. 78. P. 604–621. DOI:https://doi.org/10.1007/s00244-020-00717-y.
10. Burger J., Gochfeld M. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season // Sci. Total. Environ. Vol. 409. P. 1418–1429. DOI:https://doi.org/10.1016/j.scito tenv.2010.12.034.
11. Cebalho E.C., Díez S., dos Santos Filho M. et al. Effects of small hydropower plants on mercury concentrations in fish // Environ. Sci. Pollut. Res. 2017. Vol. 724. P. 22709–22716. DOI:https://doi.org/10.1007/s11356-017-9747-1.
12. Clayden M.G., Kidd K.A., Chételat J. et al. Environmental, geographic and trophic influences on methylmercury concentrations in macroinvertebrates from lakes and wetlands across Canada // Ecotoxicology. 2014. Vol. 23. P. 273–284. DOI:https://doi.org/10.1007/s1064 6-013-1171-9.
13. Depew D.C., Burgess N.M., Anderson M.R. et al. An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada // Can. J. Fish. Aquat. Sci. 2013. Vol. 70. P. 436–451.
14. Eagles-Smith C.A., Willacker J.J., Flanagan Pritz C.M. Mercury in fishes from 21 national parks in the Western United States — inter- and intra-park variation in concentrations and ecological risk. U.S. Geological Survey Open-File Report 2014-1051. 2014. P. 54.
15. Eagles-Smith C.A., Wiener J.G., Eckley C.S. et al. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada // Sci. Total Environ. 2016. Vol. 568. P. 1171–1184. DOI:https://doi.org/10.1016/j.scitotenv.2016.03.229.
16. Eagles-Smith C., Silbergeld E.K., Basu N. et al. Modulators of mercury risk to wildlife and humans in the context of rapid global change // Ambio. 2018. Vol. 47. P. 170–197. DOI:https://doi.org/10.1007/s1328 0-017-1011-x.
17. Environmental chemistry and toxicology of mercury / Eds. Liu G., Cai Y., O'driscoll N.A. New Jersey: Wiley J. & Sons, INC. 2012. 600 p.
18. Gabriel M.C., Kolka R., Wickman T. et al. Evaluating the spatial variation of total mercury in young-of-year yellow perch (Perca flavescens), surface water and upland soil for watershed–lake systems within the southern Boreal Shield // Sci. Total Environ. 2009. Vol. 407. P. 4117–4126. DOI:https://doi.org/10.1016/j.scito tenv.2009.03.019.
19. Grandjean P., Cordier S., Kjellström T. et al. Health effects and risk assessments. Dynamics of mercury pollution at regional and global scales. Part IV. NY: Springer, 2005. P. 511–538.
20. Grigal D.F. Inputs and outputs of mercury from terrestrial watersheds: a review // Environ Rev. 2002. Vol. 10. P. 1–39. DOI:https://doi.org/10.1139/a01-013.
21. Haines T.A., Komov V., Jagoe C.H. Lake acidity and mercury content of fish in Darvin national reserve, Russia // Environ. Pollut. 1992. Vol. 78. № 1–3. P. 107–112.
22. Hinck J.E., Schmitt C.J., Chojnacki K.A., Tillitt D.E. Environmental contaminants in freshwater fish and their risk to piscivorous wildlife based on a national monitoring program // Environ. Monit. Assess. 2009. Vol. 152. P. 469–494. DOI:https://doi.org/10.1007/s1066 1-008-0331-5.
23. Ivanova E.S., Eltsova L.S., Komov V.T. et al. Assessment of the consumptive safety of mercury in fish from the surface waters of the Vologda region in northwestern Russia // Environ Geochem Health. 2022. Vol. 45(3). P. 863–879. DOI:https://doi.org/10.1007/s10653-022-01254-4.
24. Julian P., Gu B. Mercury accumulation in largemouth bass (Micropterus salmoides Lacépède) within marsh ecosystems of the Florida Everglades, USA // Ecotoxicology. 2014. Vol. 24. P. 202–214. DOI:https://doi.org/10.1007/s1064 6-014-1373-9.
25. Kamman N., Burgess N.M., Driscoll C.T. et al. Mercury in freshwater fish of Northeast North America: a geographic perspective based on fish tissue monitoring databases // Ecotoxicology. 2005. Vol. 14. P. 163–180. DOI:https://doi.org/10.1007/s10646-004-6267-9.
26. Karagas M.R., Choi A.L., Oken E. et al. Evidence on the human health effects of low level methyl mercury exposure // Environ Health Perspect. 2012. Vol. 120. P 799–806.
27. Karimi R., Chen C.Y. Pickhardt P.C. et al. Stoichiometric controls of mercury dilution by growth // Proc. Natl. Acad. Sci. 2007. Vol. 104 P. 7477–7482. DOI:https://doi.org/10.1073/pnas.06112 61104.
28. Kasper D., Forsberg B.R., Amaral J.H.F. et al. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil // Environ. Sci. Technol. 2014. Vol. 48. P. 1032–1040. DOI:https://doi.org/10.1021/es4042644.
29. Kasper D., Palermo E.F.A., Branco C.W.C., Malm O. Evidence of elevated mercury levels in carnivorous and omnivorous fishes downstream from an Amazon reservoir // Hydrobiologia. 2012. Vol. 694. P. 87–98. DOI:https://doi.org/10.1007/s10750-012-1133-x.
30. Kidd K.A., Muir D.C.G., Evans M.S. et al. Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics // Sci. Total Environ. 2012. Vol. 438. P. 135–143. DOI:https://doi.org/10.1016/j.scitotenv.2012.08.057.
31. Komov V.T., Gremyachikh V.A. Variations in mercury concentrations in the muscles of fish in biotopes within the water bodies of Russia // Limnol. Freshwater Biol. 2022. № 3. P. 1280–1282. DOI:https://doi.org/10.31951/2658-3518-2022-A-3-1280.
32. Lavoie R.A, Jardine T.D., Chumchal M.M. et al. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis // Environ. Sci. Technol. 2013. Vol. 47. P 13385–13394. DOI:https://doi.org/10.1021/es403103t.
33. MacLean J., Magnuson J.J. Species interactions in percid communities // J. Fish. Res. BoardCan. 1977. Vol. 34. P. 1941–1951.
34. Mergler D., Anderson H.A., Chan L.H. et al. Methylmercury exposure and health effects in humans: a worldwide concern // AMBIO. 2007. Vol. 36. P. 3–11.
35. Mierle G., Ingram R. The role of humic substances in the mobilization of mercury from watersheds // Water Air Soil. Pollut. 1991. Vol. 56. P. 349–357.
36. Miller E.K., Chen C., Kamman N. et al. Mercury in the pelagic food web of Lake Champlain // Ecotoxicology. 2012. Vol. 21. P. 705–718. DOI:https://doi.org/10.1007/s1064 6-011-0829-4.
37. Obrist D., Kirk J.L., Zhang L. et al. A review of global environmental mercury processes in response to human and natural perturbations: changes of emissions, climate, and land use // AMBIO. 2018. Vol. 47. P. 116–140. DOI:https://doi.org/10.1007/s1328 0-017-1004-9.
38. Paiva T.C., Pestana I.A., Oliveira B.C.V. et al. Mercury concentrations and differences in isotopic niches of fish from upstream and downstream of an Amazon reservoir dam // Ecotoxicology. 2024. Vol. 33. P. 762–771. DOI:https://doi.org/10.1007/s10646-024-02776-6.
39. Richter W., Skinner L.C. Mercury in the fish of New Yorkʼs Great Lakes: A quarter century of near stability // Ecotoxicology. 2020. Vol. 29. P. 1721–1738. DOI:https://doi.org/10.1007/s10646-019-02130-1.
40. Rask M. The effect of low pH on perch, Perca fluviatilis L. 3. The perch population in small, acidic, extremely humic forest lakes // Ann. Zool. Fenn. 1984. Vol. 21. P. 15–22.
41. Rask M. The diet and diel feeding activity of perch, Perca fluviatilis L., in a small lake in southern Finland // Ann. Zool. Fenn. 1986. Vol. 23. P. 49–56.
42. Sackett D.K., Cope G.W., Rice J.A., Aday D.D. The influence of fish length on tissue mercury dynamics: implications for natural resource management and human health risk // Int. J. Environ. Res. Public Health. 2013. Vol. 10. P. 638–659. DOI:https://doi.org/10.3390/ijerp h1002 0638.
43. Scheuhammer A.M., Meyer M.W., Sandheinrich M.B., Murray M.W. Effects of environmental methylmercury on the health of wild birds, mammals, and fish // AMBIO. 2007. Vol. 36(1). P. 12–18.
44. Sokal R.R., Rohlf F.J. Biometry. The principals and practice of statistics in biological research. N.Y.: W.H. Freeman and Co, 1995. 887 p.
45. Tuomola L., Niklasson T., de Castro e Silva E., Hylander L.D. Fish mercury development in relation to abiotic characteristics and carbon sources in a six-year-old, Brazilian reservoir // Sci. Total Environ. 2008. Vol. 390. P. 177–187. DOI:https://doi.org/10.1016/j.scitotenv.2007.09.030.
46. Ward D.M., Nislow K.H., Chen C.Y., Folt C.L. Reduced trace element concentrations in fast-growing juvenile atlantic salmon in natural streams // Environ. Sci. Technol. 2010. Vol. 44. P. 3245–3251. DOI:https://doi.org/10.1021/es902 639a.
47. Ward D.M., Mayes B., Sturup S. et al. Assessing element-specific patterns of bioaccumulation across New England lakes // Sci. Total Environ. 2012. Vol. 421–422. P. 230–237. DOI:https://doi.org/10.1016/j.scito tenv.2012.01.058.