INFLUENCE OF GEOMAGNETIC FIELD ON INSECT BEHAVIOR
Abstract and keywords
Abstract (English):
The review presents contemporary data on the influence of the geomagnetic field and its variations on insect behavior. The most probable mechanisms of magnetoreception in different species are discussed. The prospects for studying insect electroreceptors as magnetodetectors are considered. Special attention is paid to studies investigating the impact of geomagnetic storms on insects. Differences in primary magnetoreception mechanisms are considered a potential cause for divergences in the reactions of different insect species to geomagnetic disturbances.

Keywords:
magnetite; cryptochrome; geomagnetic activity; geomagnetic storm
Text
Publication text (PDF): Read Download
References

1. Akasofu S.I., Chapman S. Solar-Terrestrial Physics. Oxford, Clarendon Press, 1972. 901 p.

2. Albert J.S., Crampton W.G.R. Electroreception and electrogenesis. The Physiology of Fishes. Boca Raton, CRC Press, 2006, pp. 429–470.

3. Alken P., Thebault E., Beggan C.D., et al. International geomagnetic reference field: the thirteenth generation. Earth Planets Space, 2021, vol. 73, id 49. doihttps://doi.org/10.1186/s40623-020-01288-x.

4. Alves O.C., Wajnberg E., Esquivel D.M.S., Srygley R.B. Magnetic material in migratory and non-migratory neotropical Lepidoptera: A magnetic resonance study. J. Magn. Magn. Mater., 2020, vol. 513, id 167053.

5. Anderson J.B., Vander Meer R.K. Magnetic orientation in the fire ant, Solenopsis invicta. Naturwissenschaften, 1993, vol. 80, pp. 568–570.

6. Andrianov G.N., Brown H.R., Ilyinsky O.B. Responses of central neurons to electrical and magnetic stimuli of the ampullae of Lorenzini in the Black Sea skate. J. Comp. Physiol., A. 1974, vol. 93, pp. 287–299.

7. Banks A.N., Srygley R.B. Orientation by magnetic field in leaf-cutter ants, Atta colombica (Hymenoptera: Formicidae). Ethology, 2003, vol. 109, pp. 835–846.

8. Bartels J. The standardized index Ks and the planetary index Kp. IATME Bull., 1949, vol. 12b, pp. 97–120.

9. Bartels J., Heck N.H., Johnston H.F. The three-hour-range index measuring geomagnetic activity. Terr. Mag. Atmos. Electr., 1939, vol. 44, pp. 411–454.

10. Berthelier A. The geomagnetic indices: derivation, meaning and use in solar-terrestrial physics. Solar-Terrestr. Predict., 1994, vol. 4, pp. 3–20.

11. Biskup T., Schleicher E., Okafuji A. Link G., Hitomi K., Getzoff E.D., Weber S. Direct observation of a photoinduced radical pair in a cryptochrome blue-light photoreceptor. Angew. Chem. Int. Ed. Engl., 2009, vol. 48, pp. 404–447.

12. Bradlaugh A.A., Fedele G., Munro A.L., Hansen C.N., Hares J.M., Patel S., Kyriacou C.P., Jones A.R., Rosato E., Baines R.A. Essential elements of radical pair magnetosensitivity in Drosophila. Nature, 2023, vol. 615, pp. 111–116. doi:https://doi.org/10.1038/s41586-023-05735-z.

13. Brown H.R., Ilyinsky O.B. The ampullae of Lorenzini in the magnetic field. J. Comp. Physiol. A., 1978, vol. 126, pp. 333–341.

14. Camlitepe Y., Aksoy V., Uren N., Yilmaz A., Becenen I. An experimental analysis on the magnetic field sensitivity of the black-meadow ant Formica pratensis Retzius (Hymenoptera: Formicidae). Acta Biol. Hung., 2005, vol. 56, pp. 215–224. doihttps://doi.org/10.1556/ABiol.56.2005.3-4.5.

15. Camlitepe Y., Stradling D.J. Wood ants orient to magnetic fields. Proc. R. Soc. Lond. B., 1995, vol. 261, pp. 37–41.

16. Cashmore A., Jarillo J., Wu Y.J., Liu D. Cryptochromes: blue light receptors for plants and animals. Science, 1999, vol. 284, pp. 760–765.

17. Chen L. Ouyang X., Yang Z., Tong Z. The study on the relationship between solar activity and the fluctuation of rice planthopper population. Jiangxi Plant Protection, 1994, vol. 17, pp. 1–3. (in Chinese)

18. Chernyshev V.B. Influence of disturbed magnetic field on the activity of insects. Soveschsanie po Izucheniyu Vliyaniya Magnetikh Poley na Biologicheskie Obyekti [Meeting on the Study of the Influence of Magnetic Fields on Biological Objects]. Moscow, 1966, pp. 80–83. (in Russian)

19. Chernyshev V.B. Anomalies in insect behavior and geomagnetic storms. Priroda, 1994, no. 9, pp. 20–25. (in Russian)

20. Chernyshev V.B. Ecology of insects. Moscow, Izd. Mosk. Univ., 1996. 304 p. (in Russian)

21. Clarke D., Whitney H., Sutton G., Robert D. Detection and learning of floral electric fields by bumblebees. Science, 2013, vol. 340, pp. 66–69.

22. Collett T.S., Baron J. Biological compasses and the coordinate frame of landmark memories in honeybees. Nature, 1994, vol. 368, pp. 137–140.

23. Davis T.N., Sugiura M. Auroral electrojet activity index AE and its universal time variations. J. Geophys. Res., 1966, vol. 71, pp. 785–801.

24. DeJong D. The orientation of comb-building by honeybees. J. Comp. Physiol. A., 1982, vol. 147, pp. 495–501.

25. Dreyer D., Frost B., Mouritsen H., Gunther A., Green K., Whitehouse M., Johnsen S., Heinze S., Warrant E. The Earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian Bogong moth. Curr. Biol., 2018, vol. 28, pp. 2160–2166.e5.

26. El-Jaick L.J., Acosta-Avalos D., Motta de Souza Esquivel D., Wajnberg E., Linhares P.M. Electron paramagnetic resonance study of honeybee Apis mellifera abdomens. Eur. Biophys. J., 2001, vol. 29, pp. 579–586.

27. Evans E.W., Kattnig D.R., Henbest K.B., Hore P.J., Mackenzie S.R., Timmel C.R. Sub-millitesla magnetic field effects on the recombination reaction of flavin and ascorbic acid radicals. J. Chem. Phys., 2016, vol. 145, id 085101.

28. Fleischmann P.N., Grob R., Muller V.L., Wehner R., Rossler W. The geomagnetic field is a compass cue in Cataglyphis ant navigation. Curr. Biol., 2018, vol. 28, pp. 1440–1444.e2. doi:https://doi.org/10.1016/j.cub.2018.03.043.

29. Foley L.E., Gegear R.J., Reppert S.M. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun., 2011, vol. 2, id e356.

30. Galvan I., Hassasfar A., Adams B., Petruccione F. Isotope effects on radical pair performance in cryptochrome: A new hypothesis for the evolution of animal migration: The quantum biology of migration. Bioessays, 2024, vol. 46, id e2300152. doi:https://doi.org/10.1002/bies.202300152.

31. Gegear R.J., Casselman A., Waddell S., Reppert S.M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature, 2008, vol. 454, pp. 1014–1018.

32. Greggers U., Koch G., Schmidt V., Durr A., Floriou-Servou A., Piepenbrock D., Gopfert M.C., Menzel R. Reception and learning of electric fields in bees. Proc. Roy. Soc. B Biol. Sci., 2013, vol. 280, id 20130528. doi:https://doi.org/10.1098/rspb.2013.0528.

33. Grob R., Fleischmann P.N., Rossler W. Learning to navigate – how desert ants calibrate their compass systems. Neuroforum, 2019, vol. 25, pp. 109–120. doi:https://doi.org/10.1515/nf-2018-0011.

34. Guerra P.A. Gegear R.J., Reppert S.M. A magnetic compass aids monarch butterfly migration. Nat. Commun., 2014, vol. 5, id 4164. doi:https://doi.org/10.1038/ncomms5164.

35. Gulson-Castillo E.R., Van Doren B.M., Bui M.X., Horton K.G., Li J., Moldwin M.B., Shedden K., Welling D.T., Winger B.M. Space weather disrupts nocturnal bird migration. Proc. Natl. Acad. Sci., 2023, vol. 120, id e2306317120. doi:https://doi.org/10.1073/pnas.2306317120.

36. Hofmann M.H. Physiology of ampullary electrosensory systems. Encyclopedia of Fish Physiology from Genome to Environment. San Diego, Acad. Press, 2011, pp. 359–365.

37. Hogben H.J., Efimova O., Wagner-Rundell N., Timmel C.R., Hore P. Possible involvement of superoxide and dioxygen with cryptochrome in avian magnetoreception: Origin of Zeeman resonances observed by in vivo EPR spectroscopy. Chem. Phys. Lett., 2009, vol. 480, pp. 118–122.

38. Hsu C.Y., Li C.W. The ultrastructure and formation of iron granules in the honeybee (Apis mellifera). J. Exp. Biol., 1993, vol. 180, pp. 1–13.

39. Huang S., Jiang X., Lei C., Luo L. Correlation analysis between the periodic outbreaks of Loxostege sticticalis (Lepidoptera: Pyralidae) and solar activity. Acta Ecol. Sin., 2008, vol. 28, pp. 4823–4829.

40. Iso-Ivari L., Koponen S. Insect catches by light trap compared with geomagnetic and weather factors in subarctic Lapland. Rep. Kevo. Subarctic Res. Stat., 1976, vol. 13, pp. 33–35.

41. Jacobs J.A., Kato Y., Matsushita S., Troitskaya V.A. Classification of geomagnetic micropulsations. J. Geophys. Res., 1964, vol. 69, pp. 180–181.

42. Kalmijn A.J. The detection of electric fields from inanimate and animate sources other than electric organs. Handbook of Sensory Physiol. vol. 3. Berlin, Springer, 1974, pp. 147–200.

43. Kalmijn A.J. Theory of electromagnetic orientation: a further analysis. Comparative Physiology of Sensory Systems. Cambridge, Cambridge Univ. Press, 1984, pp. 525–560.

44. Kane R.P. Geomagnetic field variations. Space Sci. Rev., 1976, vol. 18, pp. 413–540.

45. Keeton W.T., Larkin T.S., Windsor D.M. Normal fluctuations in the Earth’s magnetic field influence pigeon orientation. J. Comp. Physiol., 1974, vol. 95, pp. 95–103.

46. Kerpal C., Richert S., Storey J.G., Pillai S., Liddell P.A., Gust D., Mackenzie S.R., Hore P.J., Timmel C.R. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nat. Commun., 2019, vol. 10, id 3707.

47. Kirschvink J.L., Gould J.L. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems, 1981, vol. 13, pp. 181–201.

48. Kirschvink J.L., Kobayashi-Kirschvink A. Is geomagnetic sensitivity real? Replication of the Walker-Bitterman magnetic conditioning experiment in honey bees. Am. Zool., 1991, vol. 31, pp. 169–185.

49. Kirschvink J.L., Padmanabha S., Boyce C.K., Oglesby J. Measurement of the threshold sensitivity of honeybees to weak, extremely low-frequency magnetic fields. J. Exp. Biol., 1997, vol. 200, pp. 1363–1368.

50. Kiss M., Ekk I., Toth G., Szabo S., Nowinszky L. Common effect of geomagnetism and change of moon phases on light-trap catches of fall webworm moth (Hyphantria cunea Drury). Z. Angew. Entomol., 1981, vol. 91, pp. 403–411.

51. Klimley A.P. Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Marine Biol., 1993, vol. 117, pp. 1–22.

52. Kowalski U., Wiltschko R., Fuller E. Normal fluctuations of the geomagnetic field may affect initial orientation of pigeons. J. Comp. Physiol. A., 1988, vol. 163, pp. 593–600.

53. Kuterbach D.A., Walcott B., Reeder R.J., Frankel R.B. Iron-containing cells in the honey bee (Apis mellifera). Science, 1982, vol. 218, pp. 695–697.

54. Larkin T.S., Keeton W.T. Bar magnets mask the effect of normal magnetic disturbances on pigeon orientation. J. Comp. Physiol., 1976, vol. 110, pp. 227–231.

55. Leberecht B., Wong S.Y., Satish B., Doge S., Hindman J., Venkatraman L., Apte S., Haase K., Musielak I., Dautaj G., Solov'yov I.A., Winklhofer M., Mouritsen H., Hore P.J. Upper bound for broadband radiofrequency field disruption of magnetic compass orientation in night-migratory songbirds. Proc. Natl. Acad. Sci., 2023, vol. 120, id e2301153120. doi:https://doi.org/10.1073/pnas.2301153120.

56. Lindauer M., Martin H. Magnetic effects on dancing bees. Animal Orientation and Navigation. Washington, US Government Printing Office, 1972, pp. 559–567.

57. Maeda K., Robinson A.J., Henbest K.B., Hogben H.J., Biskup T., Ahmad M., Schleicher E., Weber S., Timmel C.R., Hore P.J. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl. Acad. Sci., 2012, vol. 109, pp. 4774–4779.

58. Mann S., Sparks N.H., Walker M.M., Kirschvink J.L. Ultrastructure morphology and organization of biogenic magnetite from sockeye salmon, Onchorhynehus nerka: implications for magnetoreception. J. Exp. Biol., 1988, vol. 140, pp. 35–49.

59. Muheim R., Backman J., Akesson S. Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. J. Exp. Biol., 2002, vol. 205, pp. 3845–3856.

60. Muller P., Ahmad M. Light activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. J. Biol. Chem., 2011, vol. 286, pp. 21033–21040.

61. Nowinszky L., Puskas J., Hill L., Kiss M., Barczikay G. Pheromone trap catch of fruit pest moths influenced by the geomagnetic disturbance storm time (Dst). Mathews J. Vet. Sci., 2023, vol. 7, id 19. doihttps://doi.org/10.30654/MJVS.10019

62. Nowinszky L., Puskas J., Kiss M. Influence of geomagnetic M-Index on light-trap catch of Macrolepidoptera species selected from different families and subfamilies. Int. J. Zoo. Animal Biol., 2020, vol. 3, id 000246. doi:https://doi.org/10.23880/izab-16000246.

63. Nowinszky L., Kiss O., Puskas J., Kiss M., Barta V., Szentkiralyi F. Effect of the geomagnetic disturbance storm time (Dst) on light trapped caddisfly (Trichoptera) species. Acta Sci. Microbiol., 2021, vol. 4, pp. 11–16.

64. Oliveira J.F., Wajnberg E., Esquivel D.M., Weinkauf S., Winklhofer M., Hanzlik M. Ant antennae: are they sites for magnetoreception. J. R. Soc. Interface, 2010, vol. 7, pp. 143–152. doi:https://doi.org/10.1098/rsif.2009.0102.

65. Qin S., Yin H., Yang C., Dou Y., Liu Z., Zhang P., Yu H., Huang Y., Feng J., Hao J., Hao J., Deng L., Yan X., Dong X., Zhao Z., Jiang T., Wang H.W., Luo S.J., Xie C. A magnetic protein biocompass. Nat. Mater., 2016, vol. 15, pp. 217–226. doi:https://doi.org/10.1038/nmat4484.

66. Ritz T., Adem S., Schulten K. A model for photoreceptor-based magnetoreception in birds. Biophys. J., 2000, vol. 78, pp. 707–718.

67. Riveros A.J., Srygley R.B. Do leafcutter ants, Atta colombica, orient their path-integrated home vector with a magnetic compass. Anim. Behav., 2008, vol. 75, pp. 1273–1281. doi:https://doi.org/10.1016/j.anbehav.2007.09.030.

68. Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev., 2003, vol. 103, pp. 2203–2237.

69. Shaw J., Boyd A., House M., Woodward R., Mathes F., Cowin G., Saunders M., Baer B. Magnetic particle-mediated magnetoreception. J. R. Soc. Interface, 2015, vol. 12, id 20150499. doi:https://doi.org/10.1098/rsif.2015.0499.

70. Solov’yov I.A., Chandler D.E., Schulten K. Magnetic field effects in Arabidopsis thaliana cryptochrome-1. Biophys. J., 2007, vol. 92, pp. 2711–2726.

71. Solov’yov I.A., Schulten K. Magnetoreception through cryptochrome may involve superoxide. Biophys. J., 2009, vol. 96, pp. 4804–4813.

72. Sugiura M., Kamei T. Equatorial Dst index 1957–1986. IAGA Bull., 1991, vol. 40, pp. 1–246.

73. Sutton G. P., Clarke D., Morley E.L., Robert D. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc. Natl. Acad. Sci., 2016, vol. 113, pp. 7261–7265. doi:https://doi.org/10.1073/pnas.1601624113.

74. Timmel C.R., Hore P.J. Oscillating magnetic field effects on the yields of radical pair reactions. Chem. Phys. Lett., 1996, vol. 257, pp. 401–408.

75. Vacha M., Drstkova D., Puzova T. Tenebrio beetles use magnetic inclination compass. Naturwissenschaften, 2008, vol. 95, pp. 761–765.

76. Vacha M., Puzova T., Kvicalova M. Radio-frequency magnetic fields disrupt magnetoreception in American cockroach. J. Exp. Biol., 2009, vol. 212, pp. 3473–3477.

77. Walker M.M. A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells. J. Theor. Biol., 2008, vol. 250, pp. 85–91.

78. Walker M.M., Bitterman M.E. Conditioned responding to magnetic fields by honeybees. J. Comp. Physiol. A., 1985, vol. 157, pp. 67–71.

79. Walker M.M., Bitterman M.E. Attached magnets impair magnetic field discrimination by honeybees. J. Exp. Biol., 1989a, vol. 141, pp. 447–451.

80. Walker M.M., Bitterman M.E. Honeybees can be trained to respond to very small changes in geomagnetic field sensitivity. J. Exp. Biol., 1989b, vol. 145, pp. 489–494.

81. Wan G., Hayden A.N., Iiams S.E., Merlin C. Cryptochrome-1 mediates light-dependent inclination magnetosensing in monarch butterflies. Nat Commun., 2021, vol. 12, id 771. doihttps://doi.org/10.1038/s41467-021-21002-z.

82. Wiltschko R, Wiltschko W. Magnetoreception in birds. J. R. Soc. Interface, 2019, vol. 16, id 20190295. doi:https://doi.org/10.1098/rsif.2019.0295.

83. Wiltschko W., Wiltschko R. Disorientation of inexperienced young pigeons after transportation in total darkness. Nature, 1981, vol. 291, pp. 433–434.

84. Wiltschko W., Wiltschko R. The effect of yellow and blue light on magnetic compass orientation in European robins, Erithacus rubecula. J. Comp. Physiol. A., 1999, vol. 184, pp. 295–299.

85. Xu J., Jarocha L.E., Zollitsch T., Konowalczyk M., Henbest K.B., Richert S., Golesworthy M.J., Schmidt J., Dejean V., Sowood D.J.C., et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature, 2021, vol. 594, pp. 535–540. doi:https://doi.org/10.1038/s41586-021-03618-9.

86. Zadeh-Haghighi H., Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J. R. Soc. Interface, 2022, vol. 193, id 20220325. doi:https://doi.org/10.1098/rsif.2022.0325.

Login or Create
* Forgot password?