TO THE METHOD OF DETERMINING THE LEAF AREA OF PLANTS OF THE FAMILY NYMPHAEACEAE SALISB.
Abstract and keywords
Abstract (English):
Leaf area is an important indicator that is closely related to the size of the assimilating surface, photosynthesis, respiration, transpiration, specific leaf area, and production. The purpose of this work is to obtain regression models for determining the leaf area of widespread hydrophytes – Nuphar lutea (L.) Smith and Nymphaea candida C. Presl. These plants have a high ecological valence and make a significant contribution to the overall productivity of reservoirs. Collection of floating leaves of water lilies was carried out in 2019 in the gulf of the Volga river in the Tver region (56°58'50.4", 37°27'45.2"). A total of 108 leaves of Nuphar lutea and 170 – Nymphaea candida were collected. Main parameters: the length of the leaf blade from the attachment point of the petiole to the tip (l1), the total length (l2) and width (w) of the leaf blade were measured with an accuracy of 0.1 cm. The actual leaf area was determined by a Planix 7 planimeter. Correlation and regression analyses were used to analyze the data. The growth of water lily leaves is uniform. Regression analysis revealed the dependence of the actual leaf area (LA) on morphometric indicators l1, l2, and w. For Nuphar lutea: LAN.l=2.12∙l11.81; LAN.l=0.64∙l21.95; LAN.l=0.93∙w2.05. For Nymphaea candida: LAN.c=3.88∙l11.79; LAN.c=0.85∙l21.94; LAN.c=0.93∙w1.96 The received power equation is fair from a biological point of view and correct with mathematical. They can be used in the field without causing damage to plant communities. This is a fast, reliable and cost-effective method. It allows you to monitor, assess the degree of overgrowth of reservoirs, predict the further development of communities, and allows you to conduct research on specially protected natural areas.

Keywords:
leaf morphology, isometric growth, assimilating surface, photosynthetic surface, leaf area modeling, non-destructive measurements, regression power models, water lilies, Nuphar lutea, Nymphaea candida
Text
Publication text (PDF): Read Download
References

1. GOST 427-75 Lineyki izmeritel'nye metallicheskie. Tehnicheskie usloviya.

2. Papchenkov V.G. Rastitel'nyy pokrov vodoemov i vodotokov Srednego Povolzh'ya. Yaroslavl': CMP MUBiNT, 2001. 213 s.

3. Antunes W.C., Pompelli M.F., Carretero D.M., Da Matta F.M. 2008. Allometric models for non-destructive leaf area estimation in coffee (Coffea arabica and Coffea canephora) // Ann. Appl. Biol. Vol. 153. № 1. P. 33-40. DOIhttps://doi.org/10.1111/j.1744-7348.2008.00235.x

4. Aulio K. 1980. Accumulation of copper in fluvial sediments and yellow water lilies (Nuphar lutea) at varying distances from a metal processing plant // Bull. Environ. Contam. Toxicol. Vol. 25. № 5. P. 713-717. DOIhttps://doi.org/10.1007/bf01985597

5. Bakhshandeh E., Kamkar B., Tsialtas J.T. 2011. Application of linear models for estimation of leaf area in soybean Glycine max (L.) Merr. // Photosynthetica. Vol. 49. № 3. P. 405-416. DOIhttps://doi.org/10.1007/s11099-011-0048-5

6. Birch C.J., Hammer G.L., Rickert K.G. 1998. Improved methods for predicting individual leaf area and leaf senescence in maize (Zea mays) // Aust. J. Agric. Res. Vol. 49. № 2. P 249-262. DOIhttps://doi.org/10.1071/A97010

7. Blanco F.F., Folegatti M.V. 2003. A new method for estimating the leaf area index of cucumber and tomato plants // Hortic. Bras. Vol. 21. № 4. P. 666-669. DOIhttps://doi.org/10.1590/s0102-05362003000400019

8. Boese B.L., Clinton P.J., Dennis D., Golden R.C., Kim B. 2008. Digital image analysis of Zostera marina leaf injury // Aquat. Bot. Vol. 88. № 1. P. 87-90. DOIhttps://doi.org/10.1016/j.aquabot.2007.08.016

9. Bréda N.J.J. 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies // J. of Exp. Bot. Vol. 54. № 392. P. 2403-2417. DOIhttps://doi.org/10.1093/jxb/erg263

10. Bréda N.J.J. 2008. Leaf Area Index // Encyclopedia of Ecology. P. 457-462. DOIhttps://doi.org/10.1016/b978-0-444-63768-0.00849-0

11. Brock T.C.M., Arts G.H.P., Goossen I.L.M., Rutenfrans A.H.M. 1983. Structure and annual biomass production of Nymphoides peltata (Gmel.) O. Kuntze (Menyanthaceae) // Aquat. Bot. Vol. 17. № 3-4. P. 167-188. DOIhttps://doi.org/10.1016/0304-3770(83)90056-6

12. Buttaro D., Rouphael Y., Rivera C.M., Colla G., Gonnella M. 2015. Simple and accurate allometric model for leaf area estimation in Vitis vinifera L. genotypes // Photosynthetica. Vol. 53. № 3. P. 342-348. doihttps://doi.org/10.1007/s11099-015-0117-2

13. Calderón A., Soto F., Calderón M., Fundora L.R. 2009. Estimación de área foliar en posturas de mango (Manguifera indica L.) y aguacatero (Persea spp.) en fase de vivero a partir de las medidas lineales de las hojas // Cultivos Tropicales. Vol. 30. № 1. P. 43-48.

14. Cardona A.C., Araméndiz H.T., Barrera C.C. 2009. Estimación del área foliar de papaya (Carica papaya L.) basada en muestreo no destructive // Actualidad y Divulgación Científica. Vol. 12. № 1. P. 131-139.

15. Chernova A.M. 2015. Seasonal dynamics of yellow water lily Nuphar lutea (L.) Smith (Nymphaeaceae) in the small Ild river (Yaroslavl oblast) // Inland Water Biol Vol. 8. № 2. P. 157-165. DOIhttps://doi.org/10.1134/S1995082915020042

16. Chernova A.M. Non-destructive estimation of the leaf area in Nuphar lutea L. (Nymphaeaceae) // Modern Phytomorphology. 2019. Vol. 13. P.20-25. DOIhttps://doi.org/10.5281/zenodo.3518799

17. Costa A.P., Pôças I., Cunha M. 2016. Estimating the leaf area of cut roses in different growth stages using image processing and allometrics // Horticulturae. Vol. 2. № 6. DOIhttps://doi.org/10.3390/horticulturae2030006

18. Cristofori V., Rouphael Y., Mendoza-de Gyves E., Bignami C. 2007. A simple model for estimating leaf area of hazelnut from linear measurements // Sci. Hortic. № 113. P. 221-225. DOIhttps://doi.org/10.1016/j.scienta.2007.02.006

19. De Maria S., Rita A., Trotta V., Rivelli A.R. 2018. Assessment of a non-destructive method to estimate the leaf area of Armoracia rusticana // Acta Physiol. Plant. № 40. P. 213-217. DOIhttps://doi.org/10.1007/s11738-018-2789-2

20. De Swart E.A.M., Groenwold R., Kanne H.J., Stam P., Marcelis L.F.M., Voorrips R.E. 2004. Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L. // J. Hortic. Sci. Biotechnol. № 79. P. 764-770. DOIhttps://doi.org/10.1080/14620 316.2004.11511 840

21. Espinoza-Espinoza J.R., Ortiz-Cereceres J., Mendoza-Castillo Ma. del C., Villaseñor-Alva J.A., Villegas-Monter A., Peña-Valdivia C., Almaguer-Vargas G. 1998. Modelos de regresión para la estimación del peso fresco y seco de ramas de duraznero (Prunus persica, L. Batsh.) // Revista Chapingo Serie horticultura. Vol. 4. № 2. P. 125-131.

22. Fascella G., Darwich S., Rouphael Y. 2013. Validation of a leaf area prediction model proposed for rose // Chilean J. Agric. Res. Vol. 73. № 1. P. 73-76. DOIhttps://doi.org/10.4067/S0718-58392013000100011

23. Filbin G.J., Hough R.A. 1983. Specific leaf area, photosynthesis, and respiration in two sympatric Nymphaeaceae populations // Aquat. Bot. Vol. 17. № 2. P. 157-165. DOIhttps://doi.org/10.1016/0304-3770(83)90111-0

24. Firouzabadi A.G., Raeini-Sarjaz M., Shahnazari A., Zareabyaneh H. 2015. Non-destructive estimation of sunflower leaf area and leaf area index under different water regime managements // Arch Agron Soil Sci. № 61. P. 1357-1367. DOIhttps://doi.org/10.1080/03650 340.2014.1002776

25. Ghoreishi M., Hossini Y., Maftoon M. 2012. Simple models for predicting leaf area of mango (Mangifera indica L.) // J. Biol. Earth Sci. Vol. 2. № 2. P. 845-853.

26. Gong A., Wu X., Qiu Z., He Y. 2013. A handheld device for leaf area measurement // Computers and Electronics in Agriculture. № 98. P. 74-80. DOIhttps://doi.org/10.1016/j.compag.2013.07.013

27. Igathinathane C., Prakash V.S.S., Padma U., Babu G.R., Womac A.R. (2006). Interactive computer software development for leaf area measurement // Computers and Electronics in Agriculture. Vol. 51. № 1-2. P. 1-16. DOIhttps://doi.org/10.1016/j.compag.2005.10.003

28. Jonckheere I., Fleck S., Nackaerts K., Muys B., Coppin P., Weiss M., Baret F. 2004. Review of methods for in situ leaf area index determination. Part I. Theories, sensors and hemispherical photography // Agricultural and Forest Meteorology. № 121. P. 19-35. DOIhttps://doi.org/10.1016/j.agrformet.2003.08.027

29. Klok P.F., van der Velde G. 2017. Plant traits and environment: floating leaf blade production and turnover of waterlilies // PeerJ. 5: e3212. DOI:https://doi.org/10.7717/peerj.3212

30. Koubouris G., Bouranis D., Vogiatzis E., Nejad A.R., Giday H., Tsaniklidis G., Ligoxigakis E.K., Blazakis K., Kalaitzis P., Fanourakis D. 2018. Leaf area estimation by considering leaf dimensions in olive tree. Scientia Horticulturae. 240: 440-445. doihttps://doi.org/10.1016/j.scienta.2018.06.034

31. Liu M., Wang Z., Li S., Lü X., Wang X., Han X. 2017. Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China // Scientific Reports. 7: 10780. DOIhttps://doi.org/10.1038/s41598-017-11133-z

32. Liu Z., Zhu Y., Li F., Jin G. 2017. Non-destructively predicting leaf area, leaf mass and specific leaf area based on a linear mixed-effect model for broadleaf species // Ecological Indicators. № 78. P. 340-350. DOIhttps://doi.org/10.1016/j.ecolind.2017.03.025

33. Montero F.J., de Juan J.A., Cuesta A., Brasa A. 2000. Nondestructive methods to estimate leaf area in Vitis vinifera L. // Hort. Sci. Vol. 35. № 4. P.: 696-698. DOI:https://doi.org/10.21273/HORTSCI.35.4.696

34. Nyakwende E., Paull C.J., Atherton J.G. 1997. Non-destructive determination of leaf area in tomato plants using image processing // J. Hortic. Sci. Biotechnol. Vol. 72. № 2. P. 225-262. DOIhttps://doi.org/10.1080/14620316.1997.11515512

35. Rojas-Lara P.C., Pérez-Grajales M., Colinas-León M.T.B., Sahagún-Castellanos J., Avitia-García E. 2008. Modelos matemáticos para estimar el crecimiento del fruto de chile manzano (Capsicum pubescens) // Revista Chapingo Serie Horticultura. Vol. 14. № 3. P. 27-34.

36. Rouphael Y., Mouneimne A.H., Ismail A., Gyves E.M., Rivera C.M., Colla G. 2010. Modeling individual leaf area of rose (Rosa hybrid L.) based on leaf length and width measurement // Photosynthetica. Vol. 48. № 1. P. 9-15. DOIhttps://doi.org/10.1007/s11099-010-0003-x

37. Salazar J.C.S., Melgarejo L.M., Bautista E.H.D., Di Rienzo J.A., Casanoves F. 2018. Non-destructive estimation of the leaf weight and leaf area in cacao (Theobroma cacao L.) // Scientia Horticulturae. № 229. P. 19-24. DOIhttps://doi.org/10.1016/j.scienta.2017.10.034

38. Silva S.H., Lima J.D., Bendini H., Nomura E.S., Moraes W. 2008. Estimating leaf area in anthurium with regression functions // Cienc. Rural. № 38. P. 243-246. DOIhttps://doi.org/10.1590/S0103-84782008000100040

39. Sinden-Hempstead M., Killingbeck K.T. 1996. Influences of water depth and substrate nitrogen on leaf surface area and maximum bed extension in Nymphaea odorata // Aquat. Bot. Vol. 53. № 3-4. P. 151-162. DOIhttps://doi.org/10.1016/0304-3770(96)01020-0

40. Tech A.R.B., Silva A.L.C., Meira L.A., Oliveira M.E. Pereira L.E.T. 2018. Methods of image acquisition and software development for leaf area measurements in pastures // Computers and Electronics in Agriculture. Vol. 153. № 1. P. 278-284. DOIhttps://doi.org/10.1016/j.compag.2018.08.025

41. Tsialtas J.T., Maslaris N. 2007. Leaf shape and its relationship with leaf area index in a sugar beet (Beta vulgaris L.) cultivar // Photosynthetica. № 45. P. 527-532. DOIhttps://doi.org/10.1007/s1109 9-007-0090-5

42. Zhang L., Liu X.S. 2010. Non-destructive leaf-area estimation for Bergenia purpurascens across timberline ecotone, southeast Tibet // Ann. Bot. Fenn. Vol. 47. № 5. P. 346-352. DOIhttps://doi.org/10.5735/085.047.0504

Login or Create
* Forgot password?