PHYTOPLANKTON AND WATER QUALITY OF LAKE NERO IN SUMMER 2017
Abstract and keywords
Abstract (English):
Data on the number, biomass and phytoplankton dominant species of the sapropel shallow-water high-trophic Nero Lake (Russia, Yaroslavl region, 57°06′–57°12′ N, 39°21′–39°30′ E) in June and August 2017 are presented. Spatial heterogeneity of phytoplankton were studied in the lake. Comparison of the obtained data with the results of the previous study period up to 2012, and statistical analysis of the relationship of phytoplankton number and biomass with some hydrophysical and hydrochemical parameters were carried out. According to the average phytoplankton biomass (16.6±1.7 g/m3), the lake ecosystem was in the late of eutrophication stage, i.e. at the end of the eutrophy or the beginning of hypertrophy. The lowest biomass (0.7 g/m3 in June and 2.3 g/m3 in August) was observed in the zone of macrophyte thickets. The maximum biomass (22 g/m3 in June and 32 g/m3 in August) was observed near the Rostov city. These biomass values in 2017 are close to those obtained during high-water phase in 2012. Against the background of a decrease in the maximum values of the total phytoplankton biomass in 2017, dominant complex was still formed by shade-tolerant filamentous nonheterocystous cyanobacteria of the “S”-type group. In June, the main dominant complex consisted of cyanobacteria Limnothrix redekei (Van Goor) Meffert, Pseudanabaena limnetica (Lemm.) Komárek, and Aphanizomennon gracile (Lemm.) Lemm. In August, they were joined by Limnothrix planctonica (Wołosz.) Meffert, Planktolyngbya limnetica (Lemm.) Kom.-Legn. et Cronb, Aphanocapsa holsatica (Lemm.) Cronb. et Komárek, Microcystis aeruginosa (Kütz.) Kütz. and M. wesenbergii (Kom.) Kom.. Compared with previous studies, a decrease in the abundance of the cyanobacteria Planktothrix agardhii (Gom.) Anag. et Komárek and diatoms Aulacoseira ambigua (Grun.) Sim. and A. granulata (Ehr.) Sim. was established. In Levskii Bay, where the lowest number and biomass of phytoplankton were observed, mixotrophic phytoflagellates (cryptophytes) dominated. A multifactorial limitation of the phytoplankton development in summer, including nitrogen, sulfates and chlorides, was established.

Keywords:
Lake Nero, phytoplankton, dominant species, abundance, biomass, abiotic factors, eutrophication
References

1. Bikbulatov E.S., Bikbulatova E.M., Litvinov A.S., Poddubnyy S.A. Gidrologiya i gidrohimiya ozera Nero. Rybinsk: Rybinskiy Dom pechati, 2003. 190 s.

2. Bylinkina A.A., Trifonova N.A., Kudryavceva N.A., Kalinina L.A., Genkal L.F. Gidrohimicheskiy rezhim Sheksninskogo vodohranilischa i vodoemov Severo-Dvinskoy sistemy // Ekologicheskie issledovaniya vodoemov Volgo-Baltiyskoy i Severo-Dvinskoy vodnyh sistem. L.: Nauka, 1982. S. 45-76.

3. Vtoroy ocenochnyy doklad Rosgidrometa ob izmeneniyah klimata i ih posledstviyah na territorii Rossiyskoy Federacii. Obschee rezyume. M.: Rosgidromet, 2014. 61 s.

4. Dacenko Yu.S. Evtrofirovanie vodohranilisch. Gidrologo-gidrohimicheskie aspekty. M.: GEOS, 2007. 252 s.

5. Kitaev S.P. Osnovy limnologii dlya gidrobiologov i ihtiologov. Petrozavodsk: Karel'skiy nauchnyy centr RAN. 2007. 395. s

6. Korneva L.G. Fitoplankton vodohranilisch basseyna Volgi. Kostroma: Kostromskoy pechatnyy dom, 2015. 284 s.

7. Metodika izucheniya biogeocenozov vnutrennih vodoemov. M.: Nauka, 1975. 239 s.

8. Otchet o nauchno-issledovatel'skoy rabote “Izuchenie gidrohimicheskih i gidrobiologicheskih osobennostey ozera Nero”, gos. kontrakt №11 ot 26 iyunya 2012 g. Yaroslavl', 2012. 83 s.

9. Otchet po postroeniyu regressionnyh modeley sostoyaniya ozera Nero i vyrabotke rekomendaciy po sohraneniyu ego ekosistemy, gos. kontrakt № 11 ot 25 maya 2013 g. Yaroslavl', 2013. 121 s.

10. Otchet o nauchno-issledovatel'skoy rabote “Kompleks meropriyatiy po analizu sostoyaniya ozera Nero i neobhodimosti provedeniya rabot po ego kompleksnoy ekologicheskoy reabilitacii”. Gosudarstvennyy kontrakt ot 22 iyunya 2017 goda № 19 № gosregistracii 1320/02-232.1. Sankt-Peterburg, 2017. 353 c.

11. Sidelev S.I. Sukcessiya fitoplanktona vysokoevtrofnogo ozera Nero. Avtoref. diss. … kand. biol. nauk. Borok, 2010. 25 s.

12. Simonova Yu.V., Rusakov A.V., Ryumin A.G. Zasolennye pochvy Rostovskoy niziny (Yaroslavskaya oblast'): morfologiya, genezis, i dinamika zasoleniya v godovom gidrologicheskom cikle // Byulleten' Pochvennogo instituta imeni V.V. Dokuchaeva. 2018. T. 93. S. 40-74.

13. Skorohod A.I., Cycarin A.G. Izmenenie solevogo sostava Srednego i Yuzhnogo Kaspiya za period instrumental'nyh nablyudeniy // Vodnye resursy. 1995. T. 22, № 1. S. 101-109.

14. Sostoyanie ekosistemy ozera Nero v nachale XXI veka. M.: Nauka, 2008. 406 s.

15. Stepanova I.E., Bikbulatov E.S., Bikbulatova E.M. Biogennye elementy v Rybinskom vodohranilische na sovremennom etape // Aktual'nye problemy ekologii Yaroslavskoy oblasti. Vyp. 4. T. 1. Yaroslavl': izdanie VVO REA, 2008. S. 213-218.

16. Babanazarova O.V., Sidelev S.I., Ovseenko A.S., Korovkina K.P., Zhdanova S.M., Litvinov A.S. Water level in a shallow highly eutrophic lake: development factor by macropyte or phytoplankton type: case study of lake Nero, Yaroslavl oblast // Water Resources. 2018. Vol. 45. № 6. P. 897-907. DOI:https://doi.org/10.1134/S0097807818060027

17. Eutrophication of Waters. Monitoring, Assessment and Control. Paris: Organisation for Economic Co-Operation and Development 1982. 154 p.

18. Forsberg C., Ryding S.O. Eutrophication Parameters and Trophic State Indices in 30 Swedish Waste-Receiving Lakes // Archiv für Hydrobiologie. 1980. Vol. 89. P. 189-207.

19. George G., Järvinen M., Nõges T., Blenckner T., Moore K. The impact of the Changing Climate on the Supply and Recycling of Nitrate // The Impact of Climate Change on European Lakes. Aquatic Ecology Series, 2010. Vol. 4. P. 161-178. DOI:https://doi.org/10.1007/978-90-481-2945-4_10

20. Howarch R., Marino R., Cole J. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 2. Biogeochemical controls // Limnol. Oceanogr. 1988. Vol. 33. № 4. Part 2. P. 688-701. DOI:https://doi.org/10.4319/lo.1988.33.4_part_2.0669

21. Jeppesen E., Moss B., Bennion H., Carvalho L., DeMeester L., Feuchtmayr H., Friberg N., Gessner M.O., Hefting M., Lauridsen T.L., Liboriussen L., Malmquist H.J., May L., Meerhoff M., Olafsson J.S., Soons M. B.,. Verhoeven J.T.A. Interaction of Climate Change and Eutrophication // Climate Change Impacts on Freshwater Ecosystems (Eds. Kernan M., Battarbee R. and Moss B.). Blackwell Publishing Ltd. 2010. P. 119-151. DOI:https://doi.org/10.1002/9781444327397.ch6

22. Moore K., Jennings E., Allott N., May L., Järvinen M., Arvola L., Tamm T., Järvet A., Nõges T., Pierson D., Schneiderman E. Modelling the Effects of Climate Change on the Supply of Inorganic Nitrogen // The Impact of Climate Change on European Lakes. Aquatic Ecology Series, Vol. 4 (Ed. G. George). Springer-Verlag. 2010. P. 179-197. DOI:https://doi.org/10.1007/978-90-481-2945-4_11

23. Reynolds C., Huszar V., Kruk C., Naselli-Flores L., Melo S. Towards a functional classification of the freshwater phytoplankton // J. Plankton Res. 2002. Vol. 24. P. 417-428. DOI:https://doi.org/10.1093/plankt/24.5.417

24. Schindler D. Evolution of Phosphorus Limitation in Lakes // Science. 1977. Vol. 195. P. 260-262. DOI:https://doi.org/10.1126/science.195.4275.260

25. Smith V.H. The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis // Limnology and Oceanography. 1982. Vol. 27 (6). P. 1101-1112. DOI:https://doi.org/10.4319/lo.1982.27.6.1101

26. Sterner R. W. On the Phosphorus Limitation Paradigm for Lakes // Hydrobiology. 2008. Vol. 93. Iss. 4-5. P. 433-445. DOI:https://doi.org/10.1002/iroh.200811068

27. Zevenboom W., Mur L.R. N2 -fixing cyanobacteria: Why they do not become dominant in Dutch hypertrophic lakes // In Barica Zn. J. and Mur L.R. eds. Hypertrophic ecosystems. Junk, den Haag, 1980. P. 123-130. DOI:https://doi.org/10.1007/978-94-009-9203-0_14

Login or Create
* Forgot password?