PIGMENT CONTENT IN PHYTOPLANKTON, EPIPHYTON AND BOTTOM SEDIMENTS OF LAKE NERO
Abstract and keywords
Abstract (English):
This article presents new data on pigment concentrations in phytoplankton, epiphyton and bottom sediments of the shallow highly productive Lake Nero (Yaroslavl Region, Russia) based on survey materials in summer 2017. The depths at the stations varied within 0.4–4 m, the values of water transparency were 20–150 cm. The bottom sediments of the lake were sapropel or sapropel with remains of macrophytes. The pigment concentrations were determined by spectrophotometric method in 90% acetone extract. The average concentrations of chlorophyll a were 73.5±6.1 μg/L in phytoplankton and 40.7±21.4 mg/m2 of substrate in epiphyton, the sum of chlorophyll a with pheopigments in bottom sediments was 313±20.6 μg/g dry sediment. These values are comparable to those in the previous observation years. The relative content of pheopigments (in the sum with chlorophyll a) was characterized by low values in the functioning communities of phytoplankton (23±2%) and epiphyton (28±2%) and reached the highest value in bottom sediments (89±1%). There are competitive relations between all plant communities, as evidenced by the different variability of their production characteristics. The variation coefficient of the chlorophyll concentration reached 190% in epiphyton and only 54% in phytoplankton, while the coefficient of variation of the content of chlorophyll a with pheopigments in bottom sediments was 29%. The spatial distribution of algal pigments depended on the presence of macrophyte thickets. Overgrowing of the water area with macrophytes affected the content of pigments in phytoplankton negatively but the pigment accumulation in bottom sediments positively. The average chlorophyll concentration of phytoplankton at stations with macrophyte thickets (49±10 μg/L) was 1.5 times less than at stations without macrophytes (82±7 μg/L). In sapropel, the mean value of the sum of chlorophyll a and its derivatives in open sites was 277±16 and in overgrown areas was 397±42 μg/g dry sediment. The trophic state of the lake has remained hypertrophic for the last 800 years, despite the long-term dynamics of plant communities. The ecosystem of the lake Nero is at the last stage of succession.

Keywords:
chlorophyll a, pheopigments, phytoplankton, epiphyton, bottom sediments
Text
Publication text (PDF): Read Download
References

1. Bikbulatov E.S., Bikbulatova E.M., Litvinov A.S., Poddubnyy S.A. Gidrologiya i gidrohi¬miya ozera Nero. Rybinsk: Dom pechati, 2003. 192 s.

2. Bul'on V.V. Produkciya fitoplanktona i makrofitov: modelirovanie i prognoz // Aktual'¬nye pro-blemy ra¬cional'nogo ispol'zovaniya biologicheskih resursov vodohranilisch. Ry¬binsk: Dom pechati, 2005. S. 32-44.

3. Bul'on V.V. Soderzhanie feopigmentov v planktone // Gidrobiol. zh. 1978. T. 14. № 3. S. 62-70.

4. Vinberg G.G. Pervichnaya produkciya vodoemov. Minsk: Izd-vo AN BSSR, 1960. 329 s.

5. Kitaev S.P. Osnovy limnologii dlya gidrobiologov i ihtiologov. Petrozavodsk: Karel'¬sk. nauch. centr RAN, 2007. 395 s.

6. Meteleva N.Yu. Pigmentnye harakteristiki letnego epifitona vodohranilisch Verhney Volgi // Voda: himiya i ekologiya. 2017. № 3. S. 34-39.

7. Meteleva N.Yu. Epifiton ozera Nero // Biologiya vnutr. vod. 2001. № 4. S. 32-45.

8. Sigareva L.E. Hlorofill v donnyh otlozheniyah volzhskih vodoemov. M.: Tov-vo nauchnyh iz¬daniy KMK. 2012. 217 s.

9. Sigareva L.E., Timofeeva N.A. Soderzhanie rastitel'nyh pigmentov v litoral'nyh otlo¬zheniyah Ry-binskogo vodohranilischa v razlichnye po vodnosti gody // Biologiya vnutr. vod. 2004. № 1. S. 25-35.

10. Sigareva L.E., Timofeeva N.A., Babanazarova O.V., Zubishina A.A. Soderzhanie rastitel'¬nyh pigmen-tov v sa¬propele oz. Nero // Biologiya vnutr. vod. 2004. № 2. S. 3946.

11. Sidelev S.I., Babanazarova O.V., Rychkova E.N. Mnogoletnie izmeneniya koncentraciy hlo¬rofilla a v melko¬vodnom vysokoevtrofnom ozere // Vodnye ekosistemy: troficheskie urovni i problemy podder-zhaniya bio¬raznoobraziya: Mater. Vseros. konf. s mezhdunarod. uch. Vologda: Centr operativnoy poli-grafii “Kopernik”, 2008. S. 102-105.

12. Sostoyanie ekosistemy ozera Nero v nachale XXI veka. M.: Nauka, 2008. 406 s.

13. Struktura i funkcionirovanie ekosistemy Rybinskogo vodohranilischa v nachale XXI veka. M.: RAN, 2018. 456 s.

14. Trifonova I.S. Ocenka troficheskogo statusa vodoemov po soderzhaniyu hlorofilla a v planktone // Metodi¬cheskie voprosy izucheniya pervichnoy produkcii planktona vnutren¬nih vodoemov. SPb: Gidro-meteoizdat, 1993. S. 158-163.

15. Trifonova I.S., Afanas'eva A.L., Belyakov V.P., Bardinskiy D.S., Rodionova N.V., Rusanov A.G., Sta-nislav¬skaya E.V. Vliyanie kolebaniy gidrologicheskogo rezhima na sostoyanie biologicheskih soobschestv evtrofi¬ruyuschegosya ozera // Izv. Samar. nauch. centra RAN. 2017. T. 19. № 2(3). S. 561-568.

16. Trifonova I.S., Afanas'eva A.L., Rusanov A.G., Stanislavskaya E.V. Rastitel'nye soob¬schestva ozer cen¬tral'noy chasti Karel'skogo peresheyka kak indikatory ih ekologicheskogo sostoyaniya // Izv. Sa-mar. nauch. centra RAN. 2014. T. 16. № 1(4). S. 1034-1038.

17. Trifonova I.S., Denisova I.A., Stanislavskaya E.V., Afanas'eva A.L. Pervichnaya produkciya i trofiche-skiy status makrofitnogo ozera Bol'shoe Rakovoe (Karel'skiy peresheek) // Biologiya vnutr. vod. 1998. № 3. S. 9-18.

18. Ekologiya zarastayuschego ozera i problema ego vosstanovleniya. SPb.: Nauka, 1999. 222 s.

19. Belyaeva P.G. Photosynthetic pigments of phytoperiphyton in the Sylva River (Middle Ural) // Inland Water Biology. 2017. Vol. 10. № 1. P. 52-58. DOI:https://doi.org/10.1134/S1995082917010035

20. Boulion V.V. Contribution of major groups of autotrophic organisms to primary production of water bodies // Water Resour. 2004. V. 31. № 1. P. 92-102. DOI:https://doi.org/10.1023/B:WARE.0000013579.89883.55

21. Jeffrey S.W., Humphrey G.F. New spectrophotometric equations for determing chlorophylls a, b and c in higher plants, algae and natural phytoplankton // Biochem. Physiol. Pflanz. 1975. Vol. 167. № 2. P. 191-194. DOI:https://doi.org/10.1016/S0015-3796(17)30778-3

22. Lalonde S., Downing J.A. Epiphyton biomass is related to lake trophic status, depth, and macrophyte architec-ture // Canadian Journal of Fisheries and Aquatic Sciences. 1991. V. 48. № 11. P. 2285-2291. DOI:https://doi.org/10.1139/f91-268

23. Laugaste R., Lessok K. Planktonic algae and epiphyton of the littoral in lake Peipsi, Estonia // Limnologica. 2004. Vol. 34. № 1-2. P. 90-97. DOI:https://doi.org/10.1016/S0075-9511(04)80026-4

24. Lorenzen C.J. Determination of chlorophyll and phaeo-pigments: spectrophotometric equations // Limnol. Oceanogr. 1967. Vol. 12. № 2. P. 343-346. DOI:https://doi.org/10.4319/lo.1967.12.2.0343

25. Mineeva N.M., Metelyeva N.Yu. Comparative characteristics of phytoplankton and epiphyton productivity in the Upper Volga Reservoirs // Inland Water Biology. 2019. V. 12. Suppl. 1. P. 37-44. DOI:https://doi.org/10.1134/S1995082919050146

26. Möller W.A.A., Scharf B.W. The content of chlorophyll in the sediment of the volcanic maar lakes in the Eifel region (Germany) as an indicator for eutrophication // Hydrobiologia. 1986. Vol. 143. № 1. P. 327-329. DOI:https://doi.org/10.1007/BF00026678

27. Müller U. Vertical zonation and production rates of epiphytic algae on Phragmites australis // Freshwater Biol. 1995. Vol. 34. № 1. P. 69-80. DOI:https://doi.org/10.1111/j.1365-2427.1995.tb00424.x

28. Sigareva L.E., Timofeeva N.A., Zakonnov V.V., Rusanov A.G., Ignatyeva N.V., Pozdnyakov Sh.R. Features of natural eutrophication of shallow Lake Nero based on sedimentary pigments // Inland Water Biology. 2019. Vol. 12. Suppl. 2. P. 33-41. DOI:https://doi.org/10.1134/S1995082919060129

29. Yacobi Y.Z., Zohary T. Carbon:chlorophyll a ratio, assimilation numbers and turnover times of Lake Kinneret phytoplankton // Hydrobiologia. 2010. Vol. 639. P. 185-196. DOI:https://doi.org/10.1007/s10750-009-0023-3

Login or Create
* Forgot password?