AQUATIC VEGETATION OF SHALLOW HYPERTROPHIC LAKE IN DIFFERENT HYDROLOGICAL CONDITIONS
Abstract and keywords
Abstract (English):
Comparison of the distribution of aquatic vegetation in shallow hypertrophic Lake Nero (Yaroslavl oblast, Russia) in different hydrological conditions – during low water phase in 2002–2004 and water level rise in 2017 is presented. The total area covered by aquatic vegetation increased from 14.8 km2 in 2000–2004 to 15.8 km 2 in 2017. Correspondingly, the lake area covered by macrophytes showed its increase from 27% to 29%. The observed increase in the total plant coverage was mainly driven by helophytes which increased in the coverage area from 8.4 km2 to 11.2 km2. The coverage area of submerged vegetation during this period decreased from 5.4 km2 to 3.6 km2. Potamogeton perfoliatus showed the highest reduction in the coverage area by factor of 2.6 in the central part of the lake. In contrast, the coverage area of Ceratophyllum demersum and Myriophyllum verticillatum did not change mostly in the shallow, southern part of the lake. The analysis of literature and our data revealed that increase in water level due to building a dam on the River Veksa in the 1980s and impact of climatic factors had a negative influence on submerged vegetation. Thus, the high water level is one of the mechanisms stabilising the ecosystem of the Lake Nero in the turbid, phytoplankton-dominated state.

Keywords:
submerged hydrophytes, coverage area, alternative stable states, climatic factors
Text
Publication text (PDF): Read Download
References

1. Babanazarova O.V. Izuchenie gidrohimicheskih i gidrobiologicheskih osobennostey oz. Nero: Otchet o NIR. Yaroslavl', 2012. 82 s.

2. Bikbulatov E.S., Bikbulatova E.M., Litvinov A.S., Poddubnyy S.A. Gidrologiya i gidrohimiya oz. Nero. Rybinsk: Izd-vo OAO «Rybinskiy dom pechati». 2003. 192 s.

3. Damskaya S.A. Ocherk zarosley ozera Nero i ih fauny // Tr. Yaroslavskogo estestvenno-istoricheskogo i kraevedcheskogo ob-va. 1921. T. 3. Vyp. 1. S. 90-103.

4. Dovbnya I.V. Vysshaya vodnaya rastitel'nost' oz. Nero // Sovremennoe sostoyanie ekosistemy oz. Nero. Ch. 1. Rybinsk. 1991. S. 62-73.

5. Dovbnya I.V. Produkciya gidrofil'noy rastitel'nosti ozera Nero // Inform. byul. IBVV RAN. 1995. № 98. S. 13-16.

6. Katanskaya V.M. Vysshaya vodnaya rastitel'nost' kontinental'nyh vodoemov SSSR. Metody izucheniya. L.: Nauka. 1981. 187 s.

7. Lyashenko O.A., Babanazarova O.V. Fitoplankton // Sostoyanie ekosistemy ozera Nero v nachale XXI veka. M.: Nauka, 2008. S. 71-89.

8. Monakov A.V., Ekzercev V.A. Soobschestva pribrezhnyh i vodnyh rasteniy oz. Nero i ih fauna // Ozera Yaroslavskoy oblasti i perspektivy ih hozyaystvennogo ispol'zovaniya. Yaroslavl': Yarosl. gos. ped. in-t, Yarosl. geogr. o-vo, 1970. S. 304-318.

9. Papchenkov V.G. Rastitel'nyy pokrov vodoemov i vodotokov Srednego Povolzh'ya. Yaroslavl': CMP MUBiNT, 2001. 200 s.

10. Papchenkov V.G., Borisova M.A., Satina S.Yu., Remizov I.E., Papenova N.P. Makrofity // Sostoyanie ekosistemy ozera Nero v nachale XXI veka / Otv. red. Lazareva V.I. M.: Nauka, 2008. S. 97-116.

11. Sostoyanie ekosistemy ozera Nero v nachale XXI veka / Otv. red. Lazareva V.I. M.: Nauka, 2008. 407 s.

12. Flerov A.F. Botaniko-geograficheskie ocherki. III. Rostovskiy kray // 3emlevedenie. 1903. T. 10. Kn. 2-3. S. 193-218.

13. Chizhikov N.V. Geomorfologiya i pochvy basseyna ozera Nero i reki Ust'e-Kotorosl' // Tr. lab. sapropelevyh otlozheniy. M.: 1956, Vyp. 6. S. 130-144.

14. Blindow I., Andersson G., Hargeby A., Johansson S. Long-term pattern of alternative stable states in 2 shallow eutrophic lakes // Freshw. Biol. 1993. Vol. 30. P. 159-167. DOIhttps://doi.org/10.1111/j.1365-2427.1993.tb00796.x

15. Egertson C.J., Kopaska J.A., Downing J.A. A century of change in macrophyte abundance and composition in response to agricultural eutrophication // Hydrobiologia. 2004. Vol. 524. P. 145-156. DOIhttps://doi.org/10.1023/B:HYDR.0000036129.40386.ce.

16. Harris I., Jones P.D., Osborn T.J., Lister D.H. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset // Int. J. Climatol. 2014. Vol. 34. P. 623-642. DOI:https://doi.org/10.1002/joc.3711

17. Havens K.E., Sharfstein B., Brady M.A., East T.L., Harwell M.C., Maki R.P., Rodusky A.J. Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA // Aquat. Bot. 2004. Vol. 78. P. 67-82. DOI:https://doi.org/10.1016/j.aquabot.2003.09.005

18. Jackson L. Macrophyte-dominated and turbid states of shallow lakes: Evidence from Alberta lakes // Ecosystems. 2003. Vol. 6, P. 213-223. DOI:https://doi.org/10.1007/s10021-002-0001-3

19. Kolada A., Seppo H., Kanninen A., Sondergaard M., Dudley B., Noges P., Ott I., Ecke F., Mjelde M., Bertrin V., Davidson Th., Duel H. Deliverable D3.2-1: Overview and comparison of macrophyte survey methods used in European countries and a proposal of harmonized common sampling protocol to be used for WISER uncertainty exercise including a relevant common species list. Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013). 2009. Available online at http://www.wiser.eu/download/D3.2-1.pdf.

20. Rusanov A.G., Trifonova I.S., Ignatyeva N.V., Pavlova O.A. Long-term changes in phytoplankton and macrophyte communities in an eutrophic shallow reservoir and prospects for its restoration // Oceanol. Hydrobiol. Stud. 2020. Vol. 49(2). P. 168-183. DOI:https://doi.org/10.1515/ohs-2020-0016

21. Sand-Jensen K., Riis T., Vestergaard O., Larsen S.E. Macrophyte decline in Danish lakes and streams over the past 100 years // J. Ecol. 2000. Vol. 88. P. 1030-1040. DOI:https://doi.org/10.1046/j.1365-2745.2000.00519.x.

22. Scheffer M. Alternative attractors of shallow lakes // Sci. World. J. 2001. Vol. 1. P. 254-263. DOI:https://doi.org/10.1100/tsw.2001.62

23. Scheffer M., Hosper S.H., Meijer M.L., Moss B., Jeppesen E. Alternative equilibria in shallow lakes // Trends Ecol. Evol. 1993. Vol. 8. P. 275-279. DOI:https://doi.org/10.1016/0169-5347(93)90254-M

24. Scheffer M., van Nes E.H. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size // Hydrobiologia. 2007. Vol. 584. P. 455-466. DOI:https://doi.org/10.1007/s10750-007-0616-7

Login or Create
* Forgot password?