TO THE ANNIVERSARY OF THE LABORATORY OF ECOLOGICAL BIOCHEMISTRY OF AQUATIC ORGANISMS: HYPOTHESES, MODELS, GENERALIZATIONS
Abstract and keywords
Abstract (English):
The article lists and briefly presents hypotheses and models in the field of ecological biochemistry and genetics of aquatic organisms, and biomedicine also developed by the staff of the Laboratory of Ecological Biochemistry and the Center for Molecular Technologies in the period 1979–2024.

Keywords:
ecological biochemistry, genetics, aquatic organisms, hypotheses, models
Text
Text (PDF): Read Download
References

1. Andreeva A.M. Kriterii poiska belkov s vysokoy osmoticheskoy aktivnost'yu v krovi bezal'buminovyh kostistyh ryb // Biologiya vnutr. vod. 2025. № 6. (v pech.)

2. Bol'shakov V.V. Adaptivnaya rol' hromosomnyh inversiy u lichinok roda Chironomus (Diptera, Chironomidae) // Avtoref. dis. … kand. biol. nauk. Borok: IBVV RAN, 2013. 25 s.

3. Kuz'min E.V. Al'buminovaya sistema syvorotki krovi osetroobraznyh v rechnoy period zhizni // Voprosy ihtiologii. 1996. T. 36(1). S. 101–108.

4. Kuz'min E.V. Analiz izmenchivosti kreatinkinazy nekotoryh predstaviteley semeystva osetrovyh (Acipenseridae) // Genetika. 2008. T. 44(4). S. 507–515.

5. Kuz'min E.V. Geneticheskie osnovy i mehanizmy formirovaniya variaciy aktivnosti izofermentov citoplazmaticheskoy malatdegidrogenazy sevryugi (Acipenser stellatus) i bol'shogo amudar'inskogo lopatonosa (Rseudoscaphirhynchus kaufmanni) // Zhurn. obsch. biol. 2021. T. 82(2). S. 129–142.

6. Kuz'min E.V., Kuz'mina O.Yu. Polimorfizm lokusa miogenov u nekotoryh predstaviteley semeystva osetrovyh (Acipenseridae) // Genetika. 2014. T. 50(9). S. 1089–1097.

7. Makrushin A.V. Gipoteza o vozniknovenii mehanizma stareniya // Uspehi gerontologii. 2010. T. 23(3). S. 346–348.

8. Makrushin A.V. Pervichnyy mehanizm stareniya: gipoteza // Uspehi gerontologii. 2006. T. 19. S. 25–27.

9. Makrushin A.V. Starenie i kancerogenez — atavisticheskie processy, unasledovannye ot modul'nyh predkov: gipoteza // Uspehi gerontologii. 2009. T. 22(2). S. 228–232.

10. Makrushin A.V., Hudoley V.V. Opuhol' kak atavisticheskaya adaptivnaya reakciya na usloviya sredy // Zhurn. obsch. biol. 1991. T. 52(5). S. 717–722.

11. Makrushin A.V. Evolyucionnye predshestvenniki onkogeneza i starcheskoy involyucii // Uspehi gerontologii. 2004. Vyp. 13. S. 32–43.

12. Makrushin A.V. Starenie i kancerogenez glazami biologa. Yaroslavl': Filigran', 2024. 52 s.

13. Makrushin A.V. Starenie i onkogenez (ontogeneticheskie, evolyucionnye, ekologicheskie i social'nye aspekty). Lambert Academic Publishing, 2019. 70 c. http://ibiw.ru/index.php?p=publ&id=306.

14. Makrushin A.V. Kak i pochemu voznikli mehanizmy stareniya i onkogeneza: gipoteza // Zhurn. obsch. biol. 2008. T. 69(1). S. 19–24.

15. Slyn'ko Yu.V. Sistema razmnozheniya mezhrodovyh gibridov plotvy (Rutilus rutilus L.), lescha (Abramis brama L.) i sinca (Abramis ballerus L.) (Leuciscinae: Cyprinidae). Avtoref. dis. ... kand. biol. nauk. Sankt-Peterburg, 2000. 18 s.

16. Stolbunova V.V., Koduhova Yu.V. Yaderno-citoplazmaticheskiy konflikt u gibridov plotvy Rutilus rutilus i lescha Abramis brama kak sledstvie divergencii vidov po razmeram tela i genoma // Biologiya vnutr. vod. 2023. № 1. S. 92–105. DOI:https://doi.org/10.31857/S0320965223010187.

17. Stolbunova V.V. Mezhgenomnyy konflikt pri otdalennoy gibridizacii plotvy (Rutilus rutilus L.) i lescha (Abramis brama L.) // Uspehi sovr. biologii. 2017. T. 137(4). S. 361–372.

18. Stolbunova V.V., Gerasimov Yu.V. Skorost' zamen v COX1 MTDNK, razmer tela i povedenie plotvy Rutilus rutilus (L.), lescha Abramis brama (L.) i ih reciproknyh gibridov // Tezisy Mezhdunarodnogo kongressa “VIII S'ezd Vavilovskogo obschestva genetikov i selekcionerov, posvyaschennyy 300-letiyu rossiyskoy nauki i vysshey shkoly”. Saratov: SGU im. N.G. Chernyshevskogo. 2024. S. 769.

19. Shobanov N.A. Rod Chlronomus Melgen (Diptera, Chironomidae). Sistematika, biologiya, evolyuciya. Avtoref. diss. dokt. nauk. Sankt-Peterburg, 2000. 53 s.

20. Akifyev A.P., Grishanin A.K. Some conclusions on the role of redundant DNA and the mechanisms of eukaryotic genome evolution inferred from studies of chromatin diminution in Cyclopoida // Russian Journal of Genetics. 2005. Vol. 41(4). P. 366–377. DOI:https://doi.org/10.1007/s11177-005-0100-2.

21. Andreeva A.M. Structural Organization of Plasma Proteins as a Factor of Capillary Filtration in Pisces // Inland Water Biol. 2020. Vol. 13(4). P. 664–673. DOI:https://doi.org/10.1134/S1995082920060036.

22. Andreeva A.M. The strategies of organization of the fish plasma proteome: with and Without albumin // Russ. J. Mar. Biol. 2019. Vol. 45(4). P. 263–274. DOI:https://doi.org/10.1134/S1063074019040023.

23. Andreeva A.M., Lamash N., Martemyanov V.I. et al. High-density lipoprotein remodeling affects the osmotic properties of plasma in goldfish under critical salinity // J. Fish Biol. 2024. Vol. 104(3). P. 564–575. DOI:https://doi.org/10.1111/jfb.15607.

24. Dodson S.I., Grishanin A.K., Gross K., Wyngaard G. Morphological analysis of some cryptic species in the Acanthocyclops vernalis complex from North America // Hydrobiologia. 2003. Vol. 500. P. 131–143. DOI:https://doi.org/10.1007/978-94-007-1084-9_9.

25. Grishanin A., Chinyakova O. Study of chromatin diminution in Cyclops kolensis (Copepoda, Crustacea) by radiobiological methods // Comp. Cytogen. 2021. Vol. 15(4). P. 329–338. DOI:https://doi.org/10.3897/CompCytogen.v15.i4.64350.

26. Grishanin A.K. Chromatin Diminution and C-value Enigma // Contemporary Research and Perspectives in Biological Science. India–United Kingdom: BP International, 2024. Ch. 6, Vol. 3. P. 65–87. DOI:https://doi.org/10.9734/bpi/crpbs/v3/2423.

27. Grishanin A.K. Chromatin diminution as a tool to study some biological problems // Comp. Cytogen. 2024(a). Vol. 18(3). P. 27–49. DOI:https://doi.org/10.3897/CompCytogen.17.112152.

28. Grishanin A.K. Cytogenetic studies of chromatin diminution in freshwater crustaceans is a new approach to the study redundant DNA eukaryotes. Extended Abstract of Dr. Biol. Sci. Diss. Moscow: Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 2008. 142 p.

29. Grishanin A.K., Rasch E.M., Dodson S.I., Wyngaard G.A. Variability in genetic architecture of the cryptic species complex of Acanthocyclops vernalis (Copepoda). I. Evidence from karyotypes, genome size, and ribosomal DNA sequences // Journal of Crustacean Biology. 2005. Vol. 25(3). P. 375–383. DOI:https://doi.org/10.1651/C-2558.

30. Grishanin A.K., Rasch E.M., Dodson S.I., Wyngaard G.A. Origins and continuity in variability in genetic architecture of the cryptic species complex of Acanthocyclops vernalis (Crustacea: Copepoda) II. Evidence from crossbreeding experiments and cytogenetics // Evolution. 2006. Vol. 60(3). P. 247–256. DOI:https://doi.org/10.1111/j.0014-3820.2006.tb01103.x.

31. Grishanin A.K. Chromatin diminution in Copepoda (Crustacea): pattern, biological role and evolutionary aspects // Comparative Cytogenetics. 2014. Vol. 8. P. 1–10. DOI:https://doi.org/10.3897/CompCytogen.v8i1.5913.

32. Stolbunova V.V., Borovikova E.A. Influence of the Rate of Changes in the COX1 Gene on Body Size and Sexual Selection in Carp Hybridization // Inland Water Biol. 2023. Vol. 16(6). P. 1098–1111. DOI:https://doi.org/10.1134/S199508292306024X.

33. Yakovlev V.N., Slynko Y.V., Grechanov I.G., Krysanov E.Y. Distant hybridization in fish // Journal of Ichthyology. 2000. Vol. 40(4). P. 298–311.

Login or Create
* Forgot password?